On weakly σ-semipermutable subgroups of finite groups

被引:0
作者
Wu, Xinwei [1 ]
Li, Xianhua [2 ]
机构
[1] Nanjing Tech Univ, Nanjing 211816, Peoples R China
[2] Guizhou Normal Univ, Guiyang 530001, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite group; Weakly sigma-semipermutable subgroup; sigma-subnormal subgroup; sigma-Hall subgroup; sigma-nilpotent group;
D O I
10.1007/s11587-025-00927-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2015, A.N.Skiba in [1] introduce definition: A subgroup H of G is said to be sigma-subnormal in G if there is a subgroup chain H = H-0 <= H-1 <= center dot center dot center dot <= H-t = G such that either Hi - 1 (sic) H-i or H-i/(Hi - 1)(Hi) is sigma-primary for all i = 1, . . . , t. Later, Wenbin Guo and A.N.Skiba in [2] introduce the definition of sigma-semipermutable: A subgroup H of G is said to be sigma-semipermutable in G if G possesses a complete Hall sigma-set H such that H A(x) = A(x) H for all A is an element of H and all x is an element of G such that sigma (A) boolean AND sigma (H) = empty set. In this paper, we present a new generalized supplemented definition: A subgroup H of G is said to be: weakly sigma-semipermutable in G if there exists a sigma-subnormal subgroup T of G such that G = HT and H boolean AND T <= H-sigma G, where H-sigma G is the subgroup of H generated by all those subgroups of H which are sigma-semipermutable in G. Also, the structure of a finite group with some weakly sigma-semipermutable subgroups is investigated.
引用
收藏
页数:9
相关论文
共 13 条
  • [1] Finite Groups with Given Weakly σ-Permutable Subgroups
    Cao, C.
    Wu, Z.
    Guo, W.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 157 - 165
  • [2] Chen X., 2014, Commum. Algebra, V42, P102
  • [3] Doerk K., 1992, Finite Soluble Groups, DOI DOI 10.1515/9783110870138
  • [4] On σ-semipermutable Subgroups of Finite Groups
    Guo, Wen Bin
    Skiba, Alexander N.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (09) : 1379 - 1390
  • [5] Groups with only σ-semipermutable and σ-abnormal subgroups
    Hu, B.
    Huang, J.
    Skiba, A. N.
    [J]. ACTA MATHEMATICA HUNGARICA, 2017, 153 (01) : 236 - 248
  • [6] Huppert B., 1967, ENDLICHE GRUPPEN, DOI [10.1007/978-3-642-64981-3, DOI 10.1007/978-3-642-64981-3]
  • [7] Kegel O., 1961, Arch. Math, V12, P90, DOI DOI 10.1007/BF01650529
  • [8] Schmidt R., 1994, SUBGROUP LATTICES GR
  • [9] A generalization of a Hall theorem
    Skiba, Alexander N.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (05)
  • [10] On σ-subnormal and σ-permutable subgroups of finite groups
    Skiba, Alexander N.
    [J]. JOURNAL OF ALGEBRA, 2015, 436 : 1 - 16