Few-shot aero-engine bearing fault diagnosis with denoising diffusion based data augmentation

被引:0
|
作者
Ping, Zuowei [1 ]
Wang, Dewen [2 ]
Zhang, Yong [2 ]
Bo, Ding [3 ]
Duan, Yaqiong [2 ]
Zhou, Wei [2 ]
机构
[1] Naval Univ Engn, Natl Key Lab Electromagnet Energy, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
[3] Yangzhou Univ, Coll Informat Engn, Yangzhou 225000, Peoples R China
基金
中国国家自然科学基金;
关键词
Denoising diffusion probabilistic models; Data augmentation; Synchro-squeezed wavelet transform; Rolling bearings; Aero-engine; Fault diagnosis;
D O I
10.1016/j.neucom.2024.129327
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a core component of aero-engines, the health condition of rolling bearings is crucial to the safety and stability of the aviation power system. In the fault diagnosis of aero-engine rolling bearings, the issue of insufficient fault data has long persisted. The training process of the widely introduced Generative Adversarial Networks (GANs) is difficult to control, and their generalization ability is relatively poor. Therefore, this paper proposes a data augmentation method based on denoising diffusion probabilistic model (DDPM) for aero-engine bearing fault diagnosis under few-shot. The proposed method is grounded in a well-defined probabilistic model and mathematical principles, allowing it to avoid instability and mode collapse during training. Specifically, we first propose using the synchro-squeezed wavelet transform (SST) to convert one-dimensional time-series signals into time-domain images as model input, addressing the insufficient feature extraction of traditional time-frequency analysis methods and clearly illustrating the fault characteristics of frequency variation with time. Next, we design a CRR-UNet based on residual connections to mitigate overfitting caused by insufficient data during the reverse denoising process of DDPM, thereby improving the quality of generated samples. Finally, a deep residual shrinkage network (DRSN) is employed to conduct fault diagnosis on the augmented fault dataset. The research results show that the samples generated by this method are highly similar to the original samples, outperforming existing data augmentation methods, and the fault diagnosis accuracy on the augmented dataset reaches 98%, significantly improving fault diagnosis performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Fault Diagnosis of Controllable Pitch Propeller as Few-Shot Classification with Mechanism Simulation Data Augmentation
    Feng, Yu
    Chen, Wei
    Fu, Huanglong
    Wang, Hua
    Gao, Chaojian
    Sun, Xinyu
    Wang, Jingcheng
    2023 IEEE 2ND INDUSTRIAL ELECTRONICS SOCIETY ANNUAL ON-LINE CONFERENCE, ONCON, 2023,
  • [22] A Deep Learning-Based Method for Bearing Fault Diagnosis with Few-Shot Learning
    Li, Yang
    Gu, Xiaojiao
    Wei, Yonghe
    SENSORS, 2024, 24 (23)
  • [23] Fault diagnosis of aero-engine inter-shaft bearing based on Deep-GBM
    Tian J.
    Li Y.
    Ai Y.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (04): : 756 - 763
  • [24] Collaborative Sparse Low Rank Regularization for Aero-Engine Bearing Fault Diagnosis
    Zhang H.
    Wang X.
    Tian Y.
    Lin J.
    Du Z.
    1600, Xi'an Jiaotong University (55): : 46 - 58
  • [25] Fault Diagnosis of Aero-engine Based on Support Vector Machines
    Chen Mingzhu
    Huang Min
    MANAGEMENT ENGINEERING AND APPLICATIONS, 2010, : 201 - 204
  • [26] A Data-based Expert System for Aero-Engine Gas Path Fault Diagnosis
    Sun, Ang
    Guo, Di
    Wang, Rui
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2917 - 2922
  • [27] Multiscale Fusion Attention Convolutional Neural Network for Fault Diagnosis of Aero-Engine Rolling Bearing
    Liu, Xiaolin
    Lu, Jiani
    Li, Zhuo
    IEEE SENSORS JOURNAL, 2023, 23 (17) : 19918 - 19934
  • [28] Aero-engine Fault Diagnosis Based on Deep Self-Coding Network
    Cui J.
    Li G.
    Jiang L.
    Yu M.
    Wang J.
    1600, Nanjing University of Aeronautics an Astronautics (41): : 85 - 89
  • [29] Augmentation-based discriminative meta-learning for cross-machine few-shot fault diagnosis
    Xia, PengCheng
    Huang, YiXiang
    Wang, YuXiang
    Liu, ChengLiang
    Liu, Jie
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (06) : 1698 - 1716
  • [30] Augmentation-based discriminative meta-learning for cross-machine few-shot fault diagnosis
    PengCheng Xia
    YiXiang Huang
    YuXiang Wang
    ChengLiang Liu
    Jie Liu
    Science China Technological Sciences, 2023, 66 : 1698 - 1716