Research on thermal runaway propagation of lithium-ion batteries based on cold plate cooling and flame-retardant materials

被引:0
|
作者
Han, Xianjie [1 ,2 ]
Li, Chaoran [1 ,2 ]
Lyu, Peizhao [1 ,2 ]
Li, Menghan [1 ,2 ]
Wen, Chuang [3 ]
Rao, Zhonghao [1 ,2 ]
机构
[1] Hebei Univ Technol, Hebei Engn Res Ctr Adv Energy Storage Technol & Eq, Sch Energy & Environm Engn, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Sch Energy & Environm Engn, Hebei Key Lab Thermal Sci & Energy Clean Utilizat, Tianjin 300401, Peoples R China
[3] Univ Reading, Sch Built Environm, Reading RG6 6AH, England
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Thermal runaway propagation; Thermal management; Cold plate cooling; Flame-retardant materials; MANAGEMENT; PERFORMANCE; SAFETY; MODEL;
D O I
10.1016/j.est.2024.115271
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Battery cooling and thermal runaway propagation (TRP) inhibiting were crucial to the safe and efficient operation of lithium-ion batteries. Currently, the most frequently used methods for suppressing TRP in lithium-ion batteries can be classified into methods based on thermal insulation materials, phase change materials, and liquid cooling. However, suffering from low cooling efficiency and poor thermal insulation, these methods do not fundamentally ensure the safety of the battery system. In this paper, a cold plate-flame retardant plate-cold plate (CFCP) based inter-battery cooling system is proposed, which combines the good cooling performance of liquidcooled plates and the fireproof performance of flame-retardant materials, to inhibit the propagation of thermal runaway in batteries. Three typical structures of cooling runner and three typical flame-retardant materials, including glass wool, aerogel, and polyimide foam (PIF), are tested to achieve the optimum performance. The results demonstrate that the CFCP based cooling system could achieve better cooling performance compared to traditional bottom cold plate cooling systems; heat transfer from the thermal runaway cell to the neighboring cells could be effectively suppressed when flow rate is 0.05 m/s. Additionally, the CFCP cooling system based on aerogel and the cold plate with a five-vertical-channel cooling structure could achieve the best cooling effect.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Investigation into the effects of emergency spray on thermal runaway propagation within lithium-ion batteries
    Huang, Yuqi
    Lu, Jiajun
    Lu, Yiji
    Liu, Binghe
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [22] Preventing Thermal Runaway Propagation in Lithium-ion Batteries using a Passive Liquid Housing
    Lee, Seungmin
    Kwon, Minseo
    Kim, Youngsik
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (03)
  • [23] Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
    Feng, Xuning
    Zheng, Siqi
    Ren, Dongsheng
    He, Xiangming
    Wang, Li
    Cui, Hao
    Liu, Xiang
    Jin, Changyong
    Zhang, Fangshu
    Xu, Chengshan
    Hsu, Hungjen
    Gao, Shang
    Chen, Tianyu
    Li, Yalun
    Wang, Tianze
    Wang, Hao
    Li, Maogang
    Ouyang, Minggao
    APPLIED ENERGY, 2019, 246 : 53 - 64
  • [24] Experimental Investigation on the Thermal Management for Lithium-Ion Batteries Based on the Novel Flame Retardant Composite Phase Change Materials
    Yu, Yue
    Zhang, Jiaxin
    Zhu, Minghao
    Zhao, Luyao
    Chen, Yin
    Chen, Mingyi
    BATTERIES-BASEL, 2023, 9 (07):
  • [25] Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module
    Yuan, Chengchao
    Wang, Qingsong
    Wang, Yu
    Zhao, Yang
    APPLIED THERMAL ENGINEERING, 2019, 153 : 39 - 50
  • [26] Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries
    Liu, Kai
    Liu, Wei
    Qiu, Yongcai
    Kong, Biao
    Sun, Yongming
    Chen, Zheng
    Zhuo, Denys
    Lin, Dingchang
    Cui, Yi
    SCIENCE ADVANCES, 2017, 3 (01):
  • [27] Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway
    Mohammed, Abdul Haq
    Esmaeeli, Roja
    Aliniagerdroudbari, Haniph
    Alhadri, Muapper
    Hashemi, Seyed Reza
    Nadkarni, Gopal
    Farhad, Siamak
    APPLIED THERMAL ENGINEERING, 2019, 160
  • [28] Effects and mechanism of thermal insulation materials on thermal runaway propagation in large-format pouch lithium-ion batteries
    Zou, Kaiyu
    Xu, Jie
    Zhao, Mengke
    Lu, Shouxiang
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 185 : 1352 - 1361
  • [29] Thermal runaway process in lithium-ion batteries: A review
    Dai, Yixin
    Panahi, Aidin
    NEXT ENERGY, 2025, 6
  • [30] A topology optimization design of three-dimensional cooling plate for the thermal homogeneity of lithium-ion batteries
    Liu, Zehui
    Zeng, Xin
    Zhao, Weikang
    Gao, Yinghui
    Sun, Yaohong
    Yan, Ping
    ENERGY CONVERSION AND MANAGEMENT-X, 2022, 14