Self-normalized Cramér type moderate deviations for martingales and applications

被引:0
作者
Fan, Xiequan [1 ]
Shao, Qi-man [2 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao, Peoples R China
[2] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Dept Stat & Data Sci, SICM, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching process in a random environment; Cram & eacute; r's moderate deviations; martingales; self-normalized sequences; Student's statistic; SUBCRITICAL BRANCHING-PROCESSES; RANDOM ENVIRONMENT; LIMIT-THEOREMS; STATIONARY-SEQUENCES; MOMENTS;
D O I
10.3150/24-BEJ1722
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cram & eacute;r's moderate deviations give a quantitative estimate for the relative error of the normal approximation and provide theoretical justifications for many estimators used in statistics. In this paper, we establish self-normalized Cram & eacute;r type moderate deviations for martingales under some mild conditions. The result extends an earlier work of Fan et al. (Bernoulli 25 (2019) 2793-2823). Moreover, applications of our result to Student's statistic, stationary martingale difference sequences and branching processes in a random environment are also discussed.
引用
收藏
页码:130 / 161
页数:32
相关论文
共 45 条
  • [31] Novak S.Y., 2012, Monographs on Statistics and Applied Probability, V122
  • [32] A maximal Lp-inequality for stationary sequences and its applications
    Peligrad, Magda
    Utev, Sergey
    Wu, Wei Biao
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) : 541 - 550
  • [33] Petrov V. V., 1975, Sums of independent random variables, DOI [10.1007/978-3-642-65809-9, DOI 10.1007/978-3-642-65809-9]
  • [34] LARGE DEVIATIONS FOR MARTINGALES WITH SOME APPLICATIONS
    RACKAUSKAS, A
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (01) : 109 - 129
  • [35] Rackauskas A., 1990, Liet. Mat. Rink., V30, P784, DOI [10.1007/BF00970833, DOI 10.1007/BF00970833]
  • [36] Saulis L., 1978, Limit Theorems for Large Deviations
  • [37] Cramer type moderate deviation theorems for self-normalized processes
    Shao, Qi-Man
    Zhou, Wen-Xin
    [J]. BERNOULLI, 2016, 22 (04) : 2029 - 2079
  • [38] Self-normalized limit theorems: A survey
    Shao, Qi-Man
    Wang, Qiying
    [J]. PROBABILITY SURVEYS, 2013, 10 : 69 - 93
  • [39] A Cramer type large deviation result for student's t-statistic
    Shao, QM
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (02) : 385 - 398
  • [40] Shao QM, 1997, ANN PROBAB, V25, P285