Self-normalized Cramér type moderate deviations for martingales and applications

被引:0
作者
Fan, Xiequan [1 ]
Shao, Qi-man [2 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao, Peoples R China
[2] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Dept Stat & Data Sci, SICM, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching process in a random environment; Cram & eacute; r's moderate deviations; martingales; self-normalized sequences; Student's statistic; SUBCRITICAL BRANCHING-PROCESSES; RANDOM ENVIRONMENT; LIMIT-THEOREMS; STATIONARY-SEQUENCES; MOMENTS;
D O I
10.3150/24-BEJ1722
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cram & eacute;r's moderate deviations give a quantitative estimate for the relative error of the normal approximation and provide theoretical justifications for many estimators used in statistics. In this paper, we establish self-normalized Cram & eacute;r type moderate deviations for martingales under some mild conditions. The result extends an earlier work of Fan et al. (Bernoulli 25 (2019) 2793-2823). Moreover, applications of our result to Student's statistic, stationary martingale difference sequences and branching processes in a random environment are also discussed.
引用
收藏
页码:130 / 161
页数:32
相关论文
共 45 条
  • [1] Conditional limit theorems for intermediately subcritical branching processes in random environment
    Afanasyev, V. I.
    Boeinghoff, Ch.
    Kersting, G.
    Vatutin, V. A.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (02): : 602 - 627
  • [2] BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS, II - LIMIT THEOREMS
    ATHREYA, KB
    KARLIN, S
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 1843 - +
  • [3] On the survival probability for a class of subcritical branching processes in random environment
    Bansaye, Vincent
    Vatutin, Vladimir
    [J]. BERNOULLI, 2017, 23 (01) : 58 - 88
  • [4] Upper large deviations for Branching Processes in Random Environment with heavy tails
    Bansaye, Vincent
    Boeinghoff, Christian
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1900 - 1933
  • [5] Bentkus V, 1996, ANN PROBAB, V24, P491
  • [6] Bercu B., 2015, SpringerBriefs in Mathematics, DOI [10.1007/978-3-319-22099-4, DOI 10.1007/978-3-319-22099-4]
  • [8] Upper large deviations of branching processes in a random environment-Offspring distributions with geometrically bounded tails
    Boeinghoff, Christian
    Kersting, Goetz
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (10) : 2064 - 2077
  • [9] CRAMER-TYPE MODERATE DEVIATIONS FOR STUDENTIZED TWO-SAMPLE U-STATISTICS WITH APPLICATIONS
    Chang, Jinyuan
    Shao, Qi-Man
    Zhou, Wen-Xin
    [J]. ANNALS OF STATISTICS, 2016, 44 (05) : 1931 - 1956
  • [10] SELF-NORMALIZED CRAMER-TYPE MODERATE DEVIATIONS UNDER DEPENDENCE
    Chen, Xiaohong
    Shao, Qi-Man
    Wu, Wei Biao
    Xu, Lihu
    [J]. ANNALS OF STATISTICS, 2016, 44 (04) : 1593 - 1617