Finitely supertranslated Schwarzschild black hole and its perturbations

被引:0
作者
Hou, Shaoqi [1 ]
Lin, Kai [2 ]
Zhu, Zong-Hong [1 ,3 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[2] Univ Fed Campina Grande, Campina Grande, PB, Brazil
[3] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAVITATIONAL-WAVE BURSTS; GENERAL-RELATIVITY; ASYMPTOTIC SYMMETRIES; CONSERVED QUANTITIES; NORMAL-MODES; MEMORY; FIELD; RADIATION; STABILITY; GEOMETRY;
D O I
10.1103/PhysRevD.111.044029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A finitely supertranslated Schwarzschild black hole possesses nontrivial super-Lorentz charges compared with the standard one. This may impact the quasinormal modes of the black hole. Since the Einstein's equations are generally covariant, the quasinormal modes of a supertranslated black hole can be obtained by supertranslating the familiar results for a standard black hole. It turns out that the supertranslated quasinormal modes can be obtained by simply shifting the retarded time of the standard modes by an angle-dependent function parametrizing the supertranslation. Therefore, the supertranslated quasinormal modes oscillate at the same frequencies and decay at the same rates as the corresponding standard ones. The supertranslated metric is time translation invariant, but does not explicitly respect spherical symmetries, although it is implicitly rotationally symmetric. So the supertranslated perturbations can still be written as linear combinations of the eigenfunctions of the generalized angular momentum operators for the underlying rotational symmetry. With a suitably defined asymptotic parity transformation, any perturbation can be decomposed into the even and odd parity parts. Then, one may conclude that the isospectrality still holds. To detect such supertranslated quasinormal modes, one has to place multiple gravitational wave interferometers around the supertranslated black hole, and measure the differences in the time shifts between interferometers. Gravitational lensing may also be helpful in the same spirit.
引用
收藏
页数:21
相关论文
共 104 条
[1]   GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (14)
[2]  
Abbott B. P., 2016, PHYSICAL REVIEW LETTERS, V116, P61102, DOI [DOI 10.1103/PHYSREVLETT.116.061102, DOI 10.1103/PhysRevLett.116.221101, 10.1103/ PhysRevLett.116.061102]
[3]   The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory [J].
Agazie, Gabriella ;
Arzoumanian, Zaven ;
Baker, Paul T. ;
Becsy, Bence ;
Blecha, Laura ;
Blumer, Harsha ;
Brazier, Adam ;
Brook, Paul R. ;
Burke-Spolaor, Sarah ;
Burnette, Rand ;
Case, Robin ;
Casey-Clyde, J. Andrew ;
Charisi, Maria ;
Chatterjee, Shami ;
Cohen, Tyler ;
Cordes, James M. ;
Cornish, Neil J. ;
Crawford, Fronefield ;
Cromartie, H. Thankful ;
Decesar, Megan E. ;
Degan, Dallas ;
Demorest, Paul B. ;
Dolch, Timothy ;
Drachler, Brendan ;
Ellis, Justin A. ;
Ferdman, Robert D. ;
Ferrara, Elizabeth C. ;
Fiore, William ;
Fonseca, Emmanuel ;
Freedman, Gabriel E. ;
Garver-Daniels, Nate ;
Gentile, Peter A. ;
Glaser, Joseph ;
Good, Deborah C. ;
Gultekin, Kayhan ;
Hazboun, Jeffrey S. ;
Jennings, Ross J. ;
Johnson, Aaron D. ;
Jones, Megan L. ;
Kaiser, Andrew R. ;
Kaplan, David L. ;
Kelley, Luke Zoltan ;
Key, Joey S. ;
Laal, Nima ;
Lam, Michael T. ;
Lamb, William G. ;
Lazio, T. Joseph W. ;
Lewandowska, Natalia ;
Liu, Tingting ;
Lorimer, Duncan R. .
ASTROPHYSICAL JOURNAL, 2024, 963 (01)
[4]  
Aichelburg P.C., 1971, Gen. Rel. Grav., V2, P303, DOI 10.1007/BF00758149
[5]   Note on the symplectic structure of asymptotically flat gravity and BMS symmetries [J].
Alessio, Francesco ;
Arzano, Michele .
PHYSICAL REVIEW D, 2019, 100 (04)
[6]   UNIFIED TREATMENT OF NULL AND SPATIAL INFINITY IN GENERAL RELATIVITY .1. UNIVERSAL STRUCTURE, ASYMPTOTIC SYMMETRIES, AND CONSERVED QUANTITIES AT SPATIAL INFINITY [J].
ASHTEKAR, A ;
HANSEN, RO .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (07) :1542-1566
[7]   SYMPLECTIC-GEOMETRY OF RADIATIVE MODES AND CONSERVED QUANTITIES AT NULL INFINITY [J].
ASHTEKAR, A ;
STREUBEL, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1981, 376 (1767) :585-607
[9]   Null infinity, the BMS group and infrared issues [J].
Ashtekar, Abhay ;
Campiglia, Miguel ;
Laddha, Alok .
GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (11)
[10]   Light cone structure near null infinity of the Kerr metric [J].
Bai, Shan ;
Cao, Zhoujian ;
Gong, Xuefei ;
Shang, Yu ;
Wu, Xiaoning ;
Lau, Y. K. .
PHYSICAL REVIEW D, 2007, 75 (04)