The n-π* electronic transition induced by nitrogen vacancies enhances photocatalytic hydrogen production in carbon nitride

被引:9
作者
Xu, Zhili [1 ,2 ,3 ]
Li, Jing [4 ]
Zhan, Deyi [3 ]
Liu, Yue [5 ]
Xu, Weihong [3 ]
Wang, Junfeng [1 ,2 ,6 ]
Yu, Zhiwu [6 ]
机构
[1] Anhui Univ, Inst Phys Sci, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Inst Informat Technol, Hefei 230601, Anhui, Peoples R China
[3] Chinese Acad Sci, Inst Solid State Phys, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
[4] Chinese Acad Sci, Key Lab Photochem Convers & Optoelect Mat, Tech Inst Phys & Chem, Beijing 100190, Peoples R China
[5] Anhui Univ, Sch Chem & Chem Engn, Hefei 230601, Anhui, Peoples R China
[6] Chinese Acad Sci, Hefei Inst Phys Sci, High Magnet Field Lab, CAS Key Lab High Magnet Field & Ion Beam Phys Biol, Hefei 230031, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
N-pi* transition; N vacancies; Hydrogen production; Shallow trapping state; Tubular carbon nitride; EFFICIENT; G-C3N4; POLYMERS; STRATEGY;
D O I
10.1016/j.cej.2024.157670
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In semiconductor catalysts, long-lived excited states can effectually improve the utilization of photogenerated carriers to enhance photocatalytic performance. Herein, we used supramolecular engineering to synthesize a hollow tubular carbon nitride catalyst with N vacancies and an obvious n-pi* transition. The unique hollow tubular structure provides abundant active sites, which are favorable for photocatalytic reaction. The presence of N vacancies expands the pi-electron delocalization domains in the conjugated system, which excites the n-pi* transition and thus triggers the red-shifted absorption edge at approximately 660 nm. Experiments and DFT calculations demonstrated that the N vacancies are beneficial for narrowing the bandgap and promoting the reduction of H+ by photogenerated electrons. Femtosecond transient absorption spectroscopy (fs-TAS) indicated that the n-pi* electronic transition in the carbon nitride photocatalyst leads to slower exciton annihilation (lifetime: 38.64 +/- 10.6 ps) and extended shallow electron trapping states (lifetime: 325.9 +/- 19.3 ps). The appearance of these states adds more photogenerated electrons to the photocatalytic reaction process. The optimal hollow tubular carbon nitride catalyst exhibits a hydrogen production rate of 2664.47 mu mol center dot g- 1 center dot h- 1, which is 31.2 times higher than that of bulk carbon nitride (85.3325 mu mol center dot g- 1 center dot h- 1). This work highlights the ability of the n-pi* transition induced by N vacancies to enhance the photocatalytic activity of carbon nitride.
引用
收藏
页数:10
相关论文
共 48 条
[31]   Onion-liked carbon-embedded graphitic carbon nitride for enhanced photocatalytic hydrogen evolution and dye degradation [J].
Shi, Yuxi ;
Zhao, Qi ;
Li, Jiayin ;
Gao, Guanyue ;
Zhi, Jinfang .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 308
[32]   Regulating Local Electron Density of Iron Single Sites by Introducing Nitrogen Vacancies for Efficient Photo-Fenton Process [J].
Su, Lina ;
Wang, Pengfei ;
Ma, Xiaoli ;
Wang, Junhui ;
Zhan, Sihui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (39) :21261-21266
[33]   Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol [J].
Sun, Jingwen ;
Xu, Jingsan ;
Grafmueller, Andrea ;
Huang, Xing ;
Liedel, Clemens ;
Algara-Siller, Gerardo ;
Willinger, Marc ;
Yang, Can ;
Fu, Yongsheng ;
Wang, Xin ;
Shalom, Menny .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 205 :1-10
[34]   Biochar doped carbon nitride to enhance the photocatalytic hydrogen evolution through synergy of nitrogen vacancies and bridging carbon structure: Nanoarchitectonics and first-principles calculation [J].
Sun, Juan ;
Zhang, Bin ;
Chen, Wenxin ;
Tao, Zichen ;
Liu, Jie ;
Wang, Lidong .
CARBON, 2023, 209
[35]   Near-Field Drives Long-Lived Shallow Trapping of Polymeric C3N4 for Efficient Photocatalytic Hydrogen Evolution [J].
Wang, Wenchao ;
Bai, Xueqin ;
Ci, Qing ;
Du, Lili ;
Ren, Xingang ;
Phillips, David Lee .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (35)
[36]   CdS-sensitized 3D ordered macroporous g-C3N4 for enhanced visible-light photocatalytic hydrogen generation [J].
Wang, Xuewen ;
Li, Qiuchan ;
Lin, Qingzhuo ;
Zhang, Rongbin ;
Ding, Mingyue .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 111 :204-210
[37]   Chitosan-assisted synthesis of 1D g-C3N4 nanorods for enhanced photocatalysis [J].
Wang, Yaqian ;
Yang, Xiaonan ;
Tian, Tong ;
Liu, Yue ;
Chen, Yan ;
Xu, Gengsheng ;
Gu, Lina ;
Li, Huiquan ;
Yuan, Yupeng .
CHEMICAL COMMUNICATIONS, 2023, 59 (70) :10528-10531
[38]   Carbon chains modulate carrier transport in tubular graphitic carbon nitride for efficient photocatalytic degradation [J].
Xie, Yu ;
Wu, Guanyu ;
Zhang, Ziyang ;
Luo, Wenjing ;
Yan, Pengcheng ;
Sun, Peipei ;
Yang, Jinman ;
Zhu, Qiang ;
Lei, Yucheng ;
Mo, Zhao .
SOLID STATE SCIENCES, 2023, 142
[39]   Boosting surface charge transfer by aldehyde group grafted on loofah-sponge-like carbon nitride for visible light H2 evolution [J].
Xing, Weinan ;
Zhang, Tingting ;
Shao, Weifan ;
Zhang, Yichi ;
Li, Pingping ;
Han, Jiangang ;
Wu, Guangyu ;
Chen, Gang .
APPLIED SURFACE SCIENCE, 2023, 609
[40]   Edge effect-modulated exciton dissociation and charge transfer in porous ultrathin tubular graphitic carbon nitride for boosting photoredox activity [J].
Xing, Weinan ;
Ma, Fang ;
Li, Zongjun ;
Wang, Ao ;
Liu, Mingxia ;
Han, Jiangang ;
Wu, Guangyu ;
Tu, Wenguang .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (35) :18333-18342