Rational First Integrals of Separable Differential Equations

被引:0
|
作者
Feng Ruyong [1 ]
Guo Zewang [2 ]
Xiong Siting [1 ]
机构
[1] State Key Laboratory of Mathematical Sciences,School of Mathematics
[2] Academy of Mathematics and Systems Science,undefined
[3] Chinese Academy of Sciences,undefined
[4] University of Chinese Academy of Sciences,undefined
关键词
Separable differential equation; Rational first integral; Hermite reduction; 16S32; 68W30;
D O I
10.1007/s11786-025-00600-w
中图分类号
学科分类号
摘要
In this paper, we present a necessary and sufficient condition for the existence of rational first integrals of the following separable differential equation: dydx=f(x)g(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{dy}{dx}=f(x)g(y) \end{aligned}$$\end{document}where f(x), g(y) are two univariate rational functions. We also present an algorithm to verify the condition and to compute a rational first integral when the condition is satisfied.
引用
收藏
相关论文
共 50 条