Rational First Integrals of Separable Differential Equations

被引:0
|
作者
Feng Ruyong [1 ]
Guo Zewang [2 ]
Xiong Siting [1 ]
机构
[1] State Key Laboratory of Mathematical Sciences,School of Mathematics
[2] Academy of Mathematics and Systems Science,undefined
[3] Chinese Academy of Sciences,undefined
[4] University of Chinese Academy of Sciences,undefined
关键词
Separable differential equation; Rational first integral; Hermite reduction; 16S32; 68W30;
D O I
10.1007/s11786-025-00600-w
中图分类号
学科分类号
摘要
In this paper, we present a necessary and sufficient condition for the existence of rational first integrals of the following separable differential equation: dydx=f(x)g(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{dy}{dx}=f(x)g(y) \end{aligned}$$\end{document}where f(x), g(y) are two univariate rational functions. We also present an algorithm to verify the condition and to compute a rational first integral when the condition is satisfied.
引用
收藏
相关论文
共 50 条
  • [31] On first integrals of second-order ordinary differential equations
    Meleshko, S. V.
    Moyo, S.
    Muriel, C.
    Romero, J. L.
    Guha, P.
    Choudhury, A. G.
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 17 - 30
  • [32] Separable systems with quadratic in momenta first integrals
    Blaszak, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (08): : 1667 - 1685
  • [33] POLYNOMIAL AND RATIONAL FIRST INTEGRALS FOR PLANAR QUASI HOMOGENEOUS POLYNOMIAL DIFFERENTIAL SYSTEMS
    Gine, Jaume
    Grau, Matte
    Llibre, Jaume
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (10) : 4531 - 4547
  • [34] Rational Solutions of First Order Algebraic Ordinary Differential Equations
    Shuang Feng
    Liyong Shen
    Journal of Systems Science and Complexity, 2024, 37 : 567 - 580
  • [35] Rational Solutions of First Order Algebraic Ordinary Differential Equations
    Feng Shuang
    Shen Liyong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024, 37 (02) : 567 - 580
  • [36] Rational Solutions of First Order Algebraic Ordinary Differential Equations
    FENG Shuang
    SHEN Liyong
    Journal of Systems Science & Complexity, 2024, 37 (02) : 567 - 580
  • [37] Regarding the multiform integrals of differential algebric equations for the first order.
    Boutroux, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1909, 148 : 25 - 28
  • [38] The real integrals of differential equations of the first order in the neighbourhood of a singular point
    Dulac, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1901, 132 : 1169 - 1172
  • [39] Remarks on the Fuchs indices and the first integrals for nonlinear ordinary differential equations
    Kudryashov, Nikolay A.
    VII INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2019, 1205
  • [40] Comparison of Different Approaches to Construct First Integrals for Ordinary Differential Equations
    Naz, Rehana
    Freire, Igor Leite
    Naeem, Imran
    ABSTRACT AND APPLIED ANALYSIS, 2014,