Rational First Integrals of Separable Differential Equations

被引:0
|
作者
Feng Ruyong [1 ]
Guo Zewang [2 ]
Xiong Siting [1 ]
机构
[1] State Key Laboratory of Mathematical Sciences,School of Mathematics
[2] Academy of Mathematics and Systems Science,undefined
[3] Chinese Academy of Sciences,undefined
[4] University of Chinese Academy of Sciences,undefined
关键词
Separable differential equation; Rational first integral; Hermite reduction; 16S32; 68W30;
D O I
10.1007/s11786-025-00600-w
中图分类号
学科分类号
摘要
In this paper, we present a necessary and sufficient condition for the existence of rational first integrals of the following separable differential equation: dydx=f(x)g(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{dy}{dx}=f(x)g(y) \end{aligned}$$\end{document}where f(x), g(y) are two univariate rational functions. We also present an algorithm to verify the condition and to compute a rational first integral when the condition is satisfied.
引用
收藏
相关论文
共 50 条
  • [21] Fuchs indices and the first integrals of nonlinear differential equations
    Kudryashov, NA
    CHAOS SOLITONS & FRACTALS, 2005, 26 (02) : 591 - 603
  • [22] λ-SYMMETRIES ON THE DERIVATION OF FIRST INTEGRALS OF ORDINARY DIFFERENTIAL EQUATIONS
    Muriel, C.
    Romero, J. L.
    WASCOM 2009: 15TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, 2010, : 303 - 308
  • [23] Rational solutions of first-order differential equations
    Eremenko, A
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1998, 23 (01): : 181 - 190
  • [24] A Modification of Numerical Methods for Stochastic Differential Equations with First Integrals
    T. A. Averina
    K. A. Rybakov
    Numerical Analysis and Applications, 2019, 12 : 203 - 218
  • [26] On first integrals of second-order ordinary differential equations
    S. V. Meleshko
    S. Moyo
    C. Muriel
    J. L. Romero
    P. Guha
    A. G. Choudhury
    Journal of Engineering Mathematics, 2013, 82 : 17 - 30
  • [27] On first integrals of a class of third-order differential equations
    N. S. Berezkina
    I. P. Martynov
    V. A. Pron’ko
    Differential Equations, 2009, 45 : 1536 - 1538
  • [28] First integrals and stability of second-order differential equations
    Xu Xue-Jun
    Mei Feng-Xiang
    CHINESE PHYSICS, 2006, 15 (06): : 1134 - 1136
  • [29] On first integrals of a class of third-order differential equations
    Berezkina, N. S.
    Martynov, I. P.
    Pron'ko, V. A.
    DIFFERENTIAL EQUATIONS, 2009, 45 (10) : 1536 - 1538
  • [30] A Modification of Numerical Methods for Stochastic Differential Equations with First Integrals
    Averina, T. A.
    Rybakov, K. A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2019, 12 (03) : 203 - 218