Rational First Integrals of Separable Differential Equations

被引:0
|
作者
Feng Ruyong [1 ]
Guo Zewang [2 ]
Xiong Siting [1 ]
机构
[1] State Key Laboratory of Mathematical Sciences,School of Mathematics
[2] Academy of Mathematics and Systems Science,undefined
[3] Chinese Academy of Sciences,undefined
[4] University of Chinese Academy of Sciences,undefined
关键词
Separable differential equation; Rational first integral; Hermite reduction; 16S32; 68W30;
D O I
10.1007/s11786-025-00600-w
中图分类号
学科分类号
摘要
In this paper, we present a necessary and sufficient condition for the existence of rational first integrals of the following separable differential equation: dydx=f(x)g(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{dy}{dx}=f(x)g(y) \end{aligned}$$\end{document}where f(x), g(y) are two univariate rational functions. We also present an algorithm to verify the condition and to compute a rational first integral when the condition is satisfied.
引用
收藏
相关论文
共 50 条
  • [1] On the nonexistence of rational first integrals for systems of linear differential equations
    Nowicki, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 235 : 107 - 120
  • [2] Finding elementary first integrals for rational second order ordinary differential equations
    Duarte, L. G. S.
    da Mota, L. A. C. P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [3] Symmetries and First Integrals of Differential Equations
    Jin Zhang
    Yong Li
    Acta Applicandae Mathematicae, 2008, 103 : 147 - 159
  • [4] Symmetries and first integrals of differential equations
    Zhang, Jin
    Li, Yong
    ACTA APPLICANDAE MATHEMATICAE, 2008, 103 (02) : 147 - 159
  • [5] An efficient way to determine Liouvillian first integrals of rational second order ordinary differential equations
    Duarte, L. G. S.
    Eiras, J. C.
    da Mota, L. A. C. P.
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 298
  • [6] Generalized rational first integrals of analytic differential systems
    Cong, Wang
    Llibre, Jaume
    Zhang, Xiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (10) : 2770 - 2788
  • [7] Symmetries of first integrals and their associated differential equations
    Leach, PGL
    Govinder, KS
    Abraham-Shrauner, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 235 (01) : 58 - 83
  • [8] Local first integrals for systems of differential equations
    Zhang, X
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (49): : 12243 - 12253
  • [9] Quadratic first integrals of kinetic differential equations
    Nagy, Ilona
    Toth, Janos
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (01) : 93 - 114
  • [10] First Integrals of a Cubic System of Differential Equations
    Kadyrsizova, Zhibek
    Romanovski, Valery G.
    LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2008, 1076 : 104 - +