Kernel Compensation Method for Maxwell Eigenproblem in Photonic Crystals With Mimetic Finite Difference Discretizations

被引:0
作者
Jin, Chenhao [1 ]
Xia, Yinhua [1 ]
Xu, Yan [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei, Peoples R China
[2] Laoshan Lab, Qingdao, Peoples R China
关键词
de Rham complex; kernel compensation method; Maxwell eigenproblem; mimetic finite difference method; preconditioning; GEOMETRIC-THEORY; ITERATION; EIGENSOLVER;
D O I
10.1002/num.23171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a kernel compensation method for Maxwell eigenproblem in photonic crystals to avoid the infinite-dimensional kernels that cause many difficulties in the calculation of energy gaps. The quasi-periodic problem is first transformed into a periodic one on the cube by the Floquet-Bloch theory. Then the compensation operator is introduced in Maxwell's equation with the shifted curl operator. The discrete problem depends on the compatible discretization of the de Rham complex, which is implemented by the mimetic finite difference method in this paper. We prove that the compensation term of the discretization exactly fills up the kernel of the original discrete problem and avoids spurious eigenvalues. Also, we propose an efficient preconditioner and its FFT and multigrid solvers, which allow parallel computing. Numerical experiments for different three-dimensional lattices in photonic crystals are performed to validate the accuracy and effectiveness of the method.
引用
收藏
页数:16
相关论文
共 29 条
[11]   A NULL SPACE FREE JACOBI-DAVIDSON ITERATION FOR MAXWELL'S OPERATOR [J].
Huang, Yin-Liang ;
Huang, Tsung-Ming ;
Lin, Wen-Wei ;
Wang, Wei-Cheng .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01) :A1-A29
[12]  
Joannopoulos S.G., 2008, Pho- tonic Crystals-Molding the Flow of Light, V2
[13]   Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis [J].
Johnson, SG ;
Joannopoulos, JD .
OPTICS EXPRESS, 2001, 8 (03) :173-190
[14]  
KIKUCHI F, 1987, COMPUT METHOD APPL M, V64, P509, DOI 10.1016/0045-7825(87)90053-3
[15]  
Kikuchi F., 1989, Jpn. J. Appl. Math., V6, P209
[16]   Block locally optimal preconditioned eigenvalue Xolvers (BLOPEX) in hypre and PETSc [J].
Knyazev, A. V. ;
Argentati, M. E. ;
Lashuk, I. ;
Ovtchinnikov, E. E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (05) :2224-2239
[17]   Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method [J].
Knyazev, AV .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02) :517-541
[18]   Mimetic finite difference method [J].
Lipnikov, Konstantin ;
Manzini, Gianmarco ;
Shashkov, Mikhail .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :1163-1227
[19]  
Lu L, 2013, NAT PHOTONICS, V7, P294, DOI [10.1038/NPHOTON.2013.42, 10.1038/nphoton.2013.42]
[20]   A Parallel Eigensolver for Photonic Crystals Discretized by Edge Finite Elements [J].
Lu, Zhongjie ;
Xu, Yan .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)