Strong El Niño and La Niña precipitation-sea surface temperature sensitivity under a carbon removal scenario

被引:0
作者
Liu, Chao [1 ]
An, Soon-Il [1 ,2 ]
Yan, Zixiang [3 ,4 ,5 ]
Kim, Soong-Ki [1 ]
Paik, Seungmok [1 ]
机构
[1] Yonsei Univ, Irreversible Climate Change Res Ctr IRCC, Seoul, South Korea
[2] Yonsei Univ, Dept Atmospher Sci, Seoul, South Korea
[3] Shanghai Invest Design & Res Inst Co Ltd, Shanghai, Peoples R China
[4] Fudan Univ, MOE, Dept Atmospher & Ocean Sci, Key Lab Polar Atmosphere Ocean Ice Syst Weather &, Shanghai, Peoples R China
[5] Fudan Univ, Inst Atmospher Sci, Shanghai, Peoples R China
来源
COMMUNICATIONS EARTH & ENVIRONMENT | 2024年 / 5卷 / 01期
基金
新加坡国家研究基金会;
关键词
TROPICAL PACIFIC RAINFALL; BOUNDARY-LAYER WINDS; VERTICAL MOTION; NINO; ENSO; MODEL; CONVERGENCE; VARIABILITY; RESPONSES; IMPACTS;
D O I
10.1038/s43247-024-01958-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
El Ni & ntilde;o-Southern Oscillation-induced tropical Pacific precipitation anomalies have global impacts and will intensify under greenhouse warming, but the potential for mitigating these changes is less understood. Here, we identify distinct hysteresis features in the precipitation-sea surface temperature sensitivity between strong El Ni & ntilde;o and La Ni & ntilde;a phases using a large ensemble carbon removal numerical simulation. The strong El Ni & ntilde;o precipitation sensitivity exhibits a century-scale hysteretic enhancement and eastward shift, mainly due to modulated deep convection anomalies by the Intertropical Convergence Zone via cloud-longwave feedback. Instead, the strong La Ni & ntilde;a counterpart is concentrated toward the equator, mostly in the central-western Pacific, with a shorter hysteresis period of a few decades. This primarily involves changes in shallow convection and surface thermal structures during La Ni & ntilde;a, shaped by global warming-induced upper-ocean circulation changes. The distinct climate change regimes of strong El Ni & ntilde;o and La Ni & ntilde;a precipitation sensitivity hold important implications for assessing mitigation consequences.
引用
收藏
页数:16
相关论文
共 67 条
  • [11] Cai W., Et al., Increasing frequency of extreme El Niño events due to greenhouse warming, Nat. Clim. Chang, 4, pp. 111-116, (2014)
  • [12] Huang P., Xie S.-P., Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate, Nat. Geosci, 8, pp. 922-926, (2015)
  • [13] Huang P., Time-varying response of ENSO-induced tropical pacific rainfall to global warming in CMIP5 models. Part I: Multimodel ensemble results, J. Clim, 29, pp. 5763-5778, (2016)
  • [14] Huang P., Time-Varying Response of ENSO-Induced Tropical Pacific Rainfall to Global Warming in CMIP5 Models. Part II: Intermodel Uncertainty, J. Clim, 30, pp. 595-608, (2017)
  • [15] Power S., Delage F., Chung C., Kociuba G., Keay K., Robust twenty-first-century projections of El Niño and related precipitation variability, Nature, 502, pp. 541-545, (2013)
  • [16] Power S.B., Delage F.P.D., Chung C.T.Y., Ye H., Murphy B.F., Humans have already increased the risk of major disruptions to Pacific rainfall, Nat. Commun, 8, (2017)
  • [17] Yan Z., Et al., Eastward shift and extension of ENSO-induced tropical precipitation anomalies under global warming, Sci. Adv, 6, (2020)
  • [18] Yun K.-S., Et al., Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship, Commun. Earth Environ, 2, (2021)
  • [19] Bayr T., Dommenget D., Martin T., Power S.B., The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability, Clim. Dyn, 43, pp. 2747-2763, (2014)
  • [20] Held I.M., Soden B.J., Robust responses of the hydrological cycle to global warming, J. Clim, 19, pp. 5686-5699, (2006)