Shortwave Infrared Spectroscopy and Geochemical Characteristics of White Mica-Group Minerals in the Sinongduo Low-Sulfide Epithermal Deposit, Tibet, China

被引:0
作者
Li, Xuerui [1 ]
Guo, Na [1 ]
Li, Chunhao [1 ]
Deng, Siyuan [1 ]
Zhou, Weirui [2 ]
机构
[1] Chengdu Univ Technol, Coll Earth & Planetary Sci, Chengdu 610059, Peoples R China
[2] Tibet Univ, Coll Engn, Lhasa 850000, Peoples R China
基金
中国国家自然科学基金;
关键词
low-sulfidation epithermal deposit; shortwave infrared; white mica-group mineral; Sinongduo; Woruo; PARAGONITE-MUSCOVITE SOLVUS; PORPHYRY; EXPLORATION; SPECTRA; POLYMORPHISM; REFLECTANCE; SMECTITE; ILLITES;
D O I
10.3390/min15020104
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sinongduo is the first low-sulfidation epithermal deposit to be found in the Gangdese metallogenic belt, Xizang, China. Through the integration of Shortwave Infrared (SWIR) spectroscopy, an electron probe microanalysis (EPMA), X-ray diffraction (XRD), and three-dimensional modeling, the following findings were obtained: (1) The alteration minerals in the belt predominantly belong to the white mica group, with mineral assemblages of muscovite -> muscovite + illite -> muscovite + illite + montmorillonite -> muscovite + paragonite + montmorillonite -> muscovite + paragonite + illite + montmorillonite from the outer edges to the ore zones. (2) On the basis of the number of interlayer cations, the white mica-group minerals were classified into three distinct types. (3) The SWIR spectral exploration model indicates the spatial distribution of the mineral combinations and their spectral characteristics in the low-sulfidation epithermal deposit. On the basis of these results, we predict that Woruo, an area located north of Sinongduo, has immense potential for future mineral exploration.
引用
收藏
页数:21
相关论文
共 49 条
[1]   X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions [J].
Ali, Asif ;
Chiang, Yi Wai ;
Santos, Rafael M. .
MINERALS, 2022, 12 (02)
[2]  
BARNES HL, 1979, GEOCHEMISTRY HYDROTH
[4]   Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas [J].
Bishop, J. L. ;
Lane, M. D. ;
Dyar, M. D. ;
Brown, A. J. .
CLAY MINERALS, 2008, 43 (01) :35-54
[5]   THE PARAGONITE-MUSCOVITE SOLVUS .2. NUMERICAL GEOTHERMOMETERS FOR NATURAL, QUASI-BINARY PARAGONITE-MUSCOVITE PAIRS [J].
BLENCOE, JG ;
GUIDOTTI, CV ;
SASSI, FP .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1994, 58 (10) :2277-2288
[6]  
Burns R. G., 1993, Mineralogical Applications of Crystal Field Theory, DOI [10.1017/CBO9780511524899, DOI 10.1017/CBO9780511524899]
[7]   Exploration Tools for Linked Porphyry and Epithermal Deposits: Example from the Mankayan Intrusion-Centered Cu-Au District, Luzon, Philippines [J].
Chang, Zhaoshan ;
Hedenquist, Jeffrey W. ;
White, Noel C. ;
Cooke, David R. ;
Roach, Michael ;
Deyell, Cari L. ;
Garcia, Joey, Jr. ;
Gemmell, J. Bruce ;
McKnight, Stafford ;
Cuison, Ana Liza .
ECONOMIC GEOLOGY, 2011, 106 (08) :1365-1398
[8]   HIGH SPECTRAL RESOLUTION REFLECTANCE SPECTROSCOPY OF MINERALS [J].
CLARK, RN ;
KING, TVV ;
KLEJWA, M ;
SWAYZE, GA ;
VERGO, N .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B8) :12653-12680
[9]   Mineralogy, Mineral Chemistry and SWIR Spectral Reflectance of Chlorite and White Mica [J].
Cloutier, Jonathan ;
Piercey, Stephen J. ;
Huntington, Jonathan .
MINERALS, 2021, 11 (05)
[10]  
Cohen J, 2011, THESIS OREGON STATE