Positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval

被引:3
作者
Zhai, Chengbo [1 ]
Liu, Rui [2 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Shanxi Univ, Minist Educ, Key Lab Complex Syst & Data Sci, Taiyuan 030006, Shanxi, Peoples R China
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2024年 / 29卷 / 02期
关键词
local existence and uniqueness; positive solution; nonlocal boundary conditions; fixed point theorems for a sum operator; BOUNDARY-VALUE PROBLEM; STABILITY; SYSTEM;
D O I
10.15388/namc.2024.29.34072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to analyse the local existence and uniqueness of positive solutions for a Hadamard-type fractional differential equation with nonlocal boundary conditions on an infinite interval. The technique used to arrive our results depends on two fixed point theorems of a sum operator in partial ordering Banach spaces. The local existence and uniqueness of positive solution is given, and we can make iterative sequences to approximate the unique positive solution. For the illustration of the main results, we list two concrete examples in the last section.
引用
收藏
页码:224 / 243
页数:20
相关论文
共 29 条
[1]   Boundary Value Problems of Hadamard-Type Fractional Differential Equations and Inclusions with Nonlocal Conditions [J].
Ahmad B. ;
Ntouyas S.K. .
Vietnam Journal of Mathematics, 2017, 45 (3) :409-423
[2]   On Hadamard fractional integro-differential boundary value problems [J].
Ahmad B. ;
Ntouyas S.K. .
Journal of Applied Mathematics and Computing, 2014, 47 (1-2) :119-131
[3]   A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :348-360
[4]   Positive solutions for boundary value problem of nonlinear fractional differential equation [J].
Bai, ZB ;
Lü, HS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :495-505
[5]   On positive solutions of a nonlocal fractional boundary value problem [J].
Bai, Zhanbing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :916-924
[6]   Fractional calculus in the Mellin setting and Hadamard-type fractional integrals [J].
Butzer, PL ;
Kilbas, AA ;
Trujillo, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (01) :1-27
[7]   Analysis of p-Laplacian Hadamard fractional boundary value problems with the derivative term involved in the nonlinear term [J].
Ciftci, Ceren ;
Deren, Fulya Yoruk .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) :8945-8955
[8]   Uniqueness of positive solutions of fractional boundary value problems with non-homogeneous integral boundary conditions [J].
Graef, John R. ;
Kong, Lingju ;
Kong, Qingkai ;
Wang, Min .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) :509-528
[9]  
Guo DJ., 1988, Nonlinear Problem in Abstract Cones
[10]  
Hadamard Jacques., 1892, Essai sur l'etude des fonctions, donnees par leur developpement de Taylor