Construction of CA@MnO2 core-shell heterostructure for supercapacitor applications

被引:0
作者
Liu, Xiaochan [1 ,2 ]
Wang, Tingwei [1 ]
Yi, Xibin [2 ]
Zhang, Jing [2 ]
Zhao, Xinfu [2 ]
Liu, Sijia [2 ]
Cui, Sheng [1 ]
机构
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
[2] Qilu Univ Technol, Adv Mat Inst, Shandong Acad Sci, Shandong Key Lab Special Silicon containing Mat, Jinan 250014, Peoples R China
关键词
Manganese oxide; Carbon aerogel; Core-shell structure; Supercapacitor; ENERGY-STORAGE; POROUS CARBON; COMPOSITE ELECTRODE; PERFORMANCE; AEROGELS; OXIDE; POLYPYRROLE; FABRICATION; SULFIDE; DESIGN;
D O I
10.1016/j.cej.2025.161639
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Constructing a core-shell structure is an effective way to improve the performance of electrode materials for supercapacitors. The existing core-shell structures frequently confront common issues such as weak interfacial bonding, structural instability at high temperatures, and the difficulty of balancing conductivity and active sites. In this article, we employ a low-temperature liquid-phase method to synthesize manganese oxide (MnO2) coated on carbon aerogel (CA) heterostructure. Mn2+ ions go through the redox reaction under weak alkaline conditions, controllable grow on the surface of carbon aerogels' skeleton, and synthesis a uniform manganese oxide shell layer. CA@MnO2 not only possesses a three-dimensional porous structure but also has an enriched aperture range, and a high specific surface area. Meanwhile, the existence of the MnO2 coating layer can enhance the structural stability of the CA during high-temperature calcination. The core-shell aerogels are applied to supercapacitors and exhibit high specific capacitance (895.0 F/g) and excellent cycling performance. When utilized in the symmetrical double-electrode supercapacitor, it has a wide working voltage range (2.6 V), and high energy density (144.2 Wh/kg) at the power density of 250.0 W/kg, presenting outstanding electro performance. The calculation results indicate the MnO2 shell layer and the CA core have a distinct hetero-interface and strong interactions, which can improve the conductivity and increase the OH adsorption energy. The core-shell heterostructure CA@MnO2 is a promising supercapacitor electrode.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Assembly of the hierarchical MnO2@NiCo2O4 core-shell nanoflower for supercapacitor electrodes [J].
Zhang, Na ;
Xu, Chen ;
Wang, Hang ;
Zhang, Jianyong ;
Liu, Yufeng ;
Fang, Yongzheng .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (02) :1787-1799
[22]   Construction of Hierarchical NiCo2O4@NiFe-LDH Core-Shell Heterostructure for High-performance Positive Electrode for Supercapacitor [J].
Luo, Dapeng ;
Yong, Yi ;
Hou, Jiang ;
Guo, Weiguang ;
Liu, Hengbo ;
Zhao, Xue ;
Xiang, Jingrong ;
Zongzong, Nima ;
Han, Yuqi ;
Yan, Minglei .
CHEMNANOMAT, 2022, 8 (07)
[23]   High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures [J].
Jiang, Hao ;
Li, Chunzhong ;
Sun, Ting ;
Ma, Jan .
CHEMICAL COMMUNICATIONS, 2012, 48 (20) :2606-2608
[24]   Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor [J].
Zhu, Fangfang ;
Liu, Yu ;
Yan, Ming ;
Shi, Weidong .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 512 :419-427
[25]   Urchin-like α-FeOOH@MnO2 core-shell hollow microspheres for high-performance supercapacitor electrode [J].
Lv, Yamei ;
Che, Hongwei ;
Liu, Aifeng ;
Mu, Jingbo ;
Dai, Chengxiang ;
Zhang, Xiaoliang ;
Bai, Yongmei ;
Wang, Guangshuo ;
Zhang, Zhixiao .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (04) :433-444
[26]   Controllable Synthesis, Core-Shell Nanostructures, and Supercapacitor Performance of Highly Uniform Polypyrrole/Polyaniline Nanospheres [J].
Chen, Shaoyun ;
Cheng, Huan ;
Tian, Du ;
Li, Qi ;
Zhong, Min ;
Chen, Jian ;
Hu, Chenglong ;
Ji, Hongbing .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (04) :3701-3711
[27]   Continuous and controllable synthesis of MnO2/PPy composites with core-shell structures for supercapacitors [J].
Song, Yang ;
Shang, Minjing ;
Li, Junguo ;
Su, Yuanhai .
CHEMICAL ENGINEERING JOURNAL, 2021, 405
[28]   Optimized shell thickness of NiSi/SiC core-shell nanowires grown by hot-wire chemical vapour deposition for supercapacitor applications [J].
Hamzan, Najwa Binti ;
bin Ramly, Muhammad Mukhlis ;
bin Omar, Muhammad Firdaus ;
Nakajima, Hideki ;
Tunmee, Sarayut ;
Rahman, Saadah Abdul ;
Goh, Boon Tong .
THIN SOLID FILMS, 2020, 716
[29]   Carbon@MnO2 core-shell nanospheres for flexible high-performance supercapacitor electrode materials [J].
Zhao, Yong ;
Meng, Yuena ;
Jiang, Peng .
JOURNAL OF POWER SOURCES, 2014, 259 :219-226
[30]   Facile synthesis of core-shell FeOOH@MnO2 nanomaterials with excellent cycling stability for supercapacitor electrodes [J].
Yang, Juan ;
Wang, Hui ;
Wang, Rongfang .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (09) :6481-6487