Genetic parameters for methane production, intensity, and yield predicted from milk mid-infrared spectra throughout lactation in Holstein dairy cows

被引:1
作者
Fresco, S. [1 ,2 ]
Boichard, D. [2 ]
Fritz, S. [1 ,2 ]
Martin, P. [2 ]
机构
[1] Eliance, F-75595 Paris 12, France
[2] Univ Paris Saclay, INRAE, AgroParis Tech, GABI, F- 78350 Jouy En Josas, France
关键词
genetic correlation; methane prediction; random regression model; heritability; EMISSION TRAITS; CATTLE; MITIGATION; STANDARDIZATION; HERITABILITY; SELECTION;
D O I
10.3168/jds.2024-25231
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Genetic selection to reduce CH4 emissions is a promising solution for reducing the environmental impact of dairy cattle production. Before such a selection program can be implemented, however, it is necessary to have a better understanding of the genetic determinism of CH4 emissions and how this might influence other traits of interest. In this study, we performed a genetic analysis of 6 CH4 traits predicted from milk mid-infrared spectra. We predicted 4 CH4 traits in g/d (methane production [MeP], calculated using different prediction equations), 1 trait in g/kg of fat- and protein-corrected milk (methane intensity [MeI]), and 1 trait in g/kg of DMI. Using an external dataset, we determined these prediction equations to be applicable in the range of 70 to 200 DIM. We then estimated genetic parameters in this DIM range using random regression models on a large dataset of 829,025 spectra collected between January 2013 and February 2023 from 167,514 first- and second-parity Holstein cows. The 6 CH4 traits were found to be genetically stable throughout and across lactations, with average genetic correlations within a lactation ranging from 0.93 to 0.98, and those between lactations ranging from 0.92 to 0.98. All 6 CH4 traits were also found to be heritable, with average heritability ranging from 0.24 to 0.45. The average pairwise genetic correlations between the 6 CH4 traits ranged from -0.15 to 0.77, revealing that they are genetically distinct, including the 4 measurements of MeP. Of the 6 traits, 2 measures of MeP and MeI did not present antagonistic genetic correlations with milk yield, fat and protein contents, and SCS, and can probably be included in breeding goals with limited impact on other traits of interest.
引用
收藏
页码:11311 / 11323
页数:13
相关论文
共 39 条
[31]   Genetic parameters for methane emission traits in Australian dairy cows [J].
Richardson, C. M. ;
Nguyen, T. T. T. ;
Abdelsayed, M. ;
Moate, P. J. ;
Williams, S. R. O. ;
Chud, T. C. S. ;
Schenkel, F. S. ;
Goddard, M. E. ;
van den Berg, I ;
Cocks, B. G. ;
Marett, L. C. ;
Wales, W. J. ;
Pryce, J. E. .
JOURNAL OF DAIRY SCIENCE, 2021, 104 (01) :539-549
[32]   Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks [J].
Shadpour, Saeed ;
Chud, Tatiane C. S. ;
Hailemariam, Dagnachew ;
Plastow, Graham ;
Oliveira, Hinayah R. ;
Stothard, Paul ;
Lassen, Jan ;
Miglior, Filippo ;
Baes, Christine F. ;
Tulpan, Dan ;
Schenkel, Flavio S. .
JOURNAL OF DAIRY SCIENCE, 2022, 105 (10) :8272-8285
[33]   Quantification of methane emitted by ruminants: a review of methods [J].
Tedeschi, Luis Orlindo ;
Abdalla, Adibe Luiz ;
Alvarez, Clementina ;
Anuga, Samuel Weniga ;
Arango, Jacobo ;
Beauchemin, Karen A. ;
Becquet, Philippe ;
Berndt, Alexandre ;
Burns, Robert ;
De Camillis, Camillo ;
Chara, Julian ;
Echazarreta, Javier Martin ;
Hassouna, Melynda ;
Kenny, David ;
Mathot, Michael ;
Mauricio, Rogerio M. ;
McClelland, Shelby C. ;
Niu, Mutian ;
Onyango, Alice Anyango ;
Parajuli, Ranjan ;
Pereira, Luiz Gustavo Ribeiro ;
del Prado, Agustin ;
Paz Tieri, Maria ;
Uwizeye, Aimable ;
Kebreab, Ermias .
JOURNAL OF ANIMAL SCIENCE, 2022, 100 (07)
[34]   Heritability and genetic correlations between enteric methane production and concentration recorded by GreenFeed and sniffers on dairy cows [J].
van Breukelen, A. E. ;
Aldridge, M. N. ;
Veerkamp, R. F. ;
Koning, L. ;
Sebek, L. B. ;
de Haas, Y. .
JOURNAL OF DAIRY SCIENCE, 2023, 106 (06) :4121-4132
[35]   Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra [J].
Vanlierde, A. ;
Vanrobays, M-L. ;
Dehareng, F. ;
Froidmont, E. ;
Soyeurt, H. ;
McParland, S. ;
Lewis, E. ;
Deighton, M. H. ;
Grandl, F. ;
Kreuzer, M. ;
Gredler, B. ;
Dardenne, P. ;
Gengler, N. .
JOURNAL OF DAIRY SCIENCE, 2015, 98 (08) :5740-5747
[36]   Improving robustness and accuracy of predicted daily methane emissions of dairy cows using milk mid-infrared spectra [J].
Vanlierde, Amelie ;
Dehareng, Frederic ;
Gengler, Nicolas ;
Froidmont, Eric ;
McParland, Sinead ;
Kreuzer, Michael ;
Bell, Matthew ;
Lund, Peter ;
Martin, Cecile ;
Kuhla, Bjorn ;
Soyeurt, Helene .
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2021, 101 (08) :3394-3403
[37]   Milk mid-infrared spectra enable prediction of lactation-stage-dependent methane emissions of dairy cattle within routine population-scale milk recording schemes [J].
Vanlierde, Amelie ;
Vanrobays, Marie-Laure ;
Gengler, Nicolas ;
Dardenne, Pierre ;
Froidmont, Eric ;
Soyeurt, Helene ;
McParland, Sinead ;
Lewis, Eva ;
Deighton, Matthew H. ;
Mathot, Michael ;
Dehareng, Frederic .
ANIMAL PRODUCTION SCIENCE, 2016, 56 (2-3) :258-264
[38]   Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra [J].
Vanrobays, M. -L. ;
Bastin, C. ;
Vandenplas, J. ;
Hammami, H. ;
Soyeurt, H. ;
Vanlierde, A. ;
Dehareng, F. ;
Froidmont, E. ;
Gengler, N. .
JOURNAL OF DAIRY SCIENCE, 2016, 99 (09) :7247-7260
[39]   Residential exposure to air pollution and access to neighborhood greenspace in relation to hair cortisol concentrations during the second and third trimester of pregnancy [J].
Verheyen, Veerle Josefa ;
Remy, Sylvie ;
Lambrechts, Nathalie ;
Govarts, Eva ;
Colles, Ann ;
Poelmans, Lien ;
Verachtert, Els ;
Lefebvre, Wouter ;
Monsieurs, Pieter ;
Vanpoucke, Charlotte ;
Nielsen, Flemming ;
van den Eeden, Lena ;
Jacquemyn, Yves ;
Schoeters, Greet .
ENVIRONMENTAL HEALTH, 2021, 20 (01)