3D-Convolution Guided Spectral-Spatial Transformer for Hyperspectral Image Classification

被引:2
作者
Varahagiri, Shyam [1 ]
Sinha, Aryaman [1 ]
Dubey, Shiv Ram [1 ]
Singh, Satish Kumar [1 ]
机构
[1] Indian Inst Informat Technol, Allahabad, India
来源
2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024 | 2024年
关键词
Classification; Hyperspectral Images; Deep Learning; Transformer; Remote Sensing; 3D-Convolution; Global Average Pooling;
D O I
10.1109/CAI59869.2024.00011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, Vision Transformers (ViTs) have shown promising classification performance over Convolutional Neural Networks (CNNs) due to their self-attention mechanism. Many researchers have incorporated ViTs for Hyperspectral Image (HSI) classification. HSIs are characterised by narrow contiguous spectral bands, providing rich spectral data. Although ViTs excel with sequential data, they cannot extract spectral-spatial information like CNNs. Furthermore, to have high classification performance, there should be a strong interaction between the HSI token and the class (CLS) token. To solve these issues, we propose a 3D-Convolution guided Spectral-Spatial Transformer (3D-ConvSST) for HSI classification that utilizes a 3D-Convolution Guided Residual Module (CGRM) in-between encoders to "fuse" the local spatial and spectral information and to enhance the feature propagation. Furthermore, we forego the class token and instead apply Global Average Pooling, which effectively encodes more discriminative and pertinent high-level features for classification. Extensive experiments have been conducted on three public HSI datasets to show the superiority of the proposed model over state-of-the-art traditional, convolutional, and Transformer models. The code is available at https://github.com/ShyamVarahagiri/3D-ConvSST.
引用
收藏
页码:8 / 14
页数:7
相关论文
共 31 条
[1]   Hyperspectral Image Classification-Traditional to Deep Models: A Survey for Future Prospects [J].
Ahmad, Muhammad ;
Shabbir, Sidrah ;
Roy, Swalpa Kumar ;
Hong, Danfeng ;
Wu, Xin ;
Yao, Jing ;
Khan, Adil Mehmood ;
Mazzara, Manuel ;
Distefano, Salvatore ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :968-999
[2]   3-D Deep Learning Approach for Remote Sensing Image Classification [J].
Ben Hamida, Amina ;
Benoit, Alexandre ;
Lambert, Patrick ;
Ben Amar, Chokri .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (08) :4420-4434
[3]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[4]  
Dosovitskiy Alexey., 2021, PROC INT C LEARN REP, P2021
[5]   New Frontiers in Spectral-Spatial Hyperspectral Image Classification The latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning [J].
Ghamisi, Pedram ;
Maggiori, Emmanuel ;
Li, Shutao ;
Souza, Roberto ;
Tarabalka, Yuliya ;
Moser, Gabriele ;
De Giorgi, Andrea ;
Fang, Leyuan ;
Chen, Yushi ;
Chi, Mingmin ;
Serpico, Sebastiano B. ;
Benediktsson, Jon Atli .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2018, 6 (03) :10-43
[6]   Investigation of the random forest framework for classification of hyperspectral data [J].
Ham, J ;
Chen, YC ;
Crawford, MM ;
Ghosh, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :492-501
[7]   Spatial-Spectral Transformer for Hyperspectral Image Classification [J].
He, Xin ;
Chen, Yushi ;
Lin, Zhouhan .
REMOTE SENSING, 2021, 13 (03) :1-22
[8]   SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers [J].
Hong, Danfeng ;
Han, Zhu ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Bing ;
Plaza, Antonio ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[9]   Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing [J].
Hong, Danfeng ;
He, Wei ;
Yokoya, Naoto ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Liangpei ;
Chanussot, Jocelyn ;
Zhu, Xiaoxiang .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (02) :52-87
[10]   Deep Convolutional Neural Networks for Hyperspectral Image Classification [J].
Hu, Wei ;
Huang, Yangyu ;
Wei, Li ;
Zhang, Fan ;
Li, Hengchao .
JOURNAL OF SENSORS, 2015, 2015