Detection and characterization of pancreatic lesion with artificial intelligence: The SFR 2023 artificial intelligence data challenge

被引:2
作者
Aouad, Theodore [1 ]
Laurent, Valerie [2 ]
Levant, Paul [3 ]
Rode, Agnes [4 ]
Brillat-Savarin, Nina [5 ]
Gaillot, Penelope [6 ]
Hoeffel, Christine [7 ,8 ]
Frampas, Eric [9 ]
Barat, Maxime [10 ,11 ,12 ]
Russo, Roberta [13 ]
Wagner, Mathilde [14 ]
Zappa, Magaly [15 ]
Ernst, Olivier [16 ]
Delagnes, Anais [17 ]
Fillias, Quentin [18 ]
Dawi, Lama [19 ]
Savoye-Collett, Celine [20 ]
Copin, Pauline [21 ]
Calame, Paul [22 ]
Reizine, Edouard [23 ]
Luciani, Alain [3 ,23 ,24 ]
Bellin, Marie-France [3 ,6 ]
Talbot, Hugues [1 ]
Lassau, Nathalie [19 ,25 ]
机构
[1] Univ Paris Saclay, Cent Supelec, INRIA, CVN, F-91190 Gif Sur Yvette, France
[2] Univ Hosp Nancy, Dept Radiol, Lab IADI INSERM U 1254, F-54035 Nancy, France
[3] Soc Francaise Radiol, F-75013 Paris, France
[4] Hop Croix Rousse, Hosp Civils Lyon, Dept Diagnost & Intervent Radiol, F-69317 Lyon, France
[5] Hop Paris St Joseph, Dept Radiol, F-75014 Paris, France
[6] CHU Bicetre, AP HP, Dept Diagnost & Intervent Radiol, F-94270 Le Kremlin Bicetre, France
[7] CHU Reims, Dept Radiol, HMB, F-51100 Reims, France
[8] Univ Reims, CReSTIC, UFR Sci Exactes & Nat, F-51100 Reims, France
[9] CHU Nantes, Dept Radiol, Hotel Dieu, F-44093 Nantes, France
[10] Hop Cochin, AP HP, Dept Radiol, F-75014 Paris, France
[11] Inst Cochin, Genom & Signalisat Tumeurs Endocrines, INSERM U 1016, CNRS UMR8104, F-75014 Paris, France
[12] Univ Paris Cite, Fac Med, F-75006 Paris, France
[13] Hop Paul Brousse, AP HP, Dept Radiol, F-94800 Villejuif, France
[14] Sorbonne Univ, Hop Univ Pitie Salpetrie, AP HP, Dept Radiol, F-75013 Paris, France
[15] Ctr Hosp Cayenne, Dept Radiol, F-97306 Cayenne, France
[16] Lille Univ Hosp, Med Imaging Dept, F-59000 Lille, France
[17] Angers Univ Hosp, Dept Radiol, CHU Angers, F-49933 Angers, France
[18] CHU Montpellier, Hosp Lapeyronie, Dept Radiol, F-34000 Montpellier, France
[19] Gustave Roussy, Dept Radiol, F-94805 Villejuif, France
[20] Normandie Univ, Rouen Univ Hosp, Quant LITIS EA 4108, Dept Radiol,UNIROUEN, Rouen, France
[21] Hop Beaujon, AP HP Nord, Dept Radiol, F-92110 Clichy, France
[22] Univ Bourgogne Franche Comte, Dept Radiol, CHU Besancon, F-25030 Besancon, France
[23] Univ Paris Est Creteil, Hop Henri Mondor, AP HP, Dept Radiol, F-94000 Creteil, France
[24] INSERM, Team 18, U955, F-94000 Creteil, France
[25] Univ Paris Saclay, Lab Imagerie Biomed Multimodale Paris Saclay, Inserm, CNRS,CEA,BIOMAPS,UMR 1281, F-94800 Villejuif, France
关键词
Artificial intelligence; Computed tomography; Deep learning; Early detection of cancer; Pancreatic cancer; CANCER; CT;
D O I
10.1016/j.diii.2024.07.002
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The purpose of the 2023 SFR data challenge was to invite researchers to develop artificial intelligence (AI) models to identify the presence of a pancreatic mass and distinguish between benign and malignant pancreatic masses on abdominal computed tomography (CT) examinations. Materials and methods: Anonymized abdominal CT examinations acquired during the portal venous phase were collected from 18 French centers. Abdominal CT examinations were divided into three groups including CT examinations with no lesion, CT examinations with benign pancreatic mass, or CT examinations with malignant pancreatic mass. Each team included at least one radiologist, one data scientist, and one engineer. Pancreatic lesions were annotated by expert radiologists. CT examinations were distributed in balanced batches via a Health Data Hosting certified platform. Data were distributed into four batches, two for training, one for internal evaluation, and one for the external evaluation. Training used 83% of the data from 14 centers and external evaluation used data from the other four centers. The metric (i.e., final score) used to rank the participants was a weighted average of mean sensitivity, mean precision and mean area under the curve. Results: A total of 1037 abdominal CT examinations were divided into two training sets (including 500 and 232 CT examinations), an internal evaluation set (including 139 CT examinations), and an external evaluation set (including 166 CT examinations). The training sets were distributed on September 7 and October 13, 2023, and evaluation sets on October 15, 2023. Ten teams with a total of 93 members participated to the data challenge, with the best final score being 0.72. Conclusion: This SFR 2023 data challenge based on multicenter CT data suggests that the use of AI for pancreatic lesions detection is possible on real data, but the distinction between benign and malignant pancreatic lesions remains challenging. (c) 2024 Soci & eacute;t & eacute; fran & ccedil;aise de radiologie. Published by Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:395 / 399
页数:5
相关论文
共 21 条
[1]   A primer on artificial intelligence in pancreatic imaging [J].
Ahmed, Taha M. ;
Kawamoto, Satomi ;
Hruban, Ralph H. ;
Fishman, Elliot K. ;
Soyer, Philippe ;
Chu, Linda C. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (09) :435-447
[2]   Pancreatic Adenocarcinoma: Imaging Modalities and the Role of Artificial Intelligence in Analyzing CT and MRI Images [J].
Anghel, Cristian ;
Grasu, Mugur Cristian ;
Anghel, Denisa Andreea ;
Rusu-Munteanu, Gina-Ionela ;
Dumitru, Radu Lucian ;
Lupescu, Ioana Gabriela .
DIAGNOSTICS, 2024, 14 (04)
[3]   Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances [J].
Barat, Maxime ;
Marchese, Ugo ;
Pellat, Anna ;
Dohan, Anthony ;
Coriat, Romain ;
Hoeffel, Christine ;
Fishman, Elliot K. K. ;
Cassinotto, Christophe ;
Chu, Linda ;
Soyer, Philippe .
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2023, 74 (02) :351-361
[4]  
Barat M, 2021, JPN J RADIOL, V39, P514, DOI 10.1007/s11604-021-01098-5
[5]   CT and MRI of pancreatic tumors: an update in the era of radiomics [J].
Bartoli, Marion ;
Barat, Maxime ;
Dohan, Anthony ;
Gaujoux, Sebastien ;
Coriat, Romain ;
Hoeffel, Christine ;
Cassinotto, Christophe ;
Chassagnon, Guillaume ;
Soyer, Philippe .
JAPANESE JOURNAL OF RADIOLOGY, 2020, 38 (12) :1111-1124
[6]   Detection and quantification of pulmonary embolism with artificial intelligence: The SFR 2022 artificial intelligence data challenge [J].
Belkouchia, Younes ;
Lederlinc, Mathieu ;
Ben Afiad, Amira ;
Fabree, Clement ;
Ferrettif, Gilbert ;
De Margerieg, Constance ;
Bergeh, Pierre ;
Libergei, Renan ;
Elbazj, Nicolas ;
Blaink, Maxime ;
Brilletl, Pierre-Yves ;
Chassagnonm, Guillaume ;
Cadourn, Farah ;
Caramellao, Caroline ;
El Hajjamp, Mostafa ;
Boussouarq, Samia ;
Hadchitir, Joya ;
Fabletc, Xavier ;
Khalild, Antoine ;
Lucianis, Alain ;
Cottent, Anne ;
Mederu, Jean-Francois ;
Talbota, Hugues ;
Lassaub, Nathalie .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (10) :485-489
[7]   Detecting early pancreatic cancer: Problems and prospects [J].
Chari, Suresh T. .
SEMINARS IN ONCOLOGY, 2007, 34 (04) :284-294
[8]   Early Detection of Sporadic Pancreatic Cancer Summative Review [J].
Chari, Suresh T. ;
Kelly, Kimberly ;
Hollingsworth, Michael A. ;
Thayer, Sarah P. ;
Ahlquist, David A. ;
Andersen, Dana K. ;
Batra, Surinder K. ;
Brentnall, Teresa A. ;
Canto, Marcia ;
Cleeter, Deborah F. ;
Firpo, Matthew A. ;
Gambhir, Sanjiv Sam ;
Go, Vay Liang W. ;
Hines, O. Joe ;
Kenner, Barbara J. ;
Klimstra, David S. ;
Lerch, Markus M. ;
Levy, Michael J. ;
Maitra, Anirban ;
Mulvihill, Sean J. ;
Petersen, Gloria M. ;
Rhim, Andrew D. ;
Simeone, Diane M. ;
Srivastava, Sudhir ;
Tanaka, Masao ;
Vinik, Aaron I. ;
Wong, David .
PANCREAS, 2015, 44 (05) :693-712
[9]   Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study [J].
Chen, Po -Ting ;
Wu, Tinghui ;
Wang, Pochuan ;
Chang, Dawei ;
Liu, Kao-Lang ;
Wu, Ming-Shiang ;
Roth, Holger R. ;
Lee, Po-Chang ;
Liao, Wei-Chih ;
Wang, Weichung .
RADIOLOGY, 2023, 306 (01) :172-182
[10]  
Grandini M, 2020, Arxiv, DOI [arXiv:2008.05756, 10.48550/arXiv.2008.05756, https://doi.org/10.48550/arXiv.2008.05756]