An orientable sequence of order n over an alphabet{0,1,& mldr;,k-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1,\ldots , k{-}1\}$$\end{document} is a cyclic sequence such that each length-n substring appears at most once in either direction. When k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k= 2$$\end{document}, efficient algorithms are known to construct binary orientable sequences, with asymptotically optimal length, by applying the classic cycle-joining technique. The key to the construction is the definition of a parent rule to construct a cycle-joining tree of asymmetric bracelets. Unfortunately, the parent rule does not generalize to larger alphabets. Furthermore, unlike the binary case, a cycle-joining tree does not immediately lead to a simple successor-rule when k >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document} unless the tree has certain properties. In this paper, we derive a parent rule to derive a cycle-joining tree of k-ary asymmetric bracelets. This leads to a successor rule that constructs asymptotically optimal k-ary orientable sequences in O(n) time per symbol using O(n) space. In the special case when n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document}, we provide a simple construction of k-ary orientable sequences of maximal length.