Constructing k-ary orientable sequences with asymptotically optimal length

被引:0
|
作者
Gabric, Daniel [1 ]
Sawada, Joe [1 ]
机构
[1] Univ Guelph, Guelph, ON, Canada
关键词
Orientable sequence; De Bruijn sequence; Concatenation tree; Cycle-joining; Universal cycle; UNIVERSAL CYCLES; SUBSETS; GENERATION; ALGORITHM;
D O I
10.1007/s10623-025-01581-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An orientable sequence of order n over an alphabet{0,1,& mldr;,k-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1,\ldots , k{-}1\}$$\end{document} is a cyclic sequence such that each length-n substring appears at most once in either direction. When k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k= 2$$\end{document}, efficient algorithms are known to construct binary orientable sequences, with asymptotically optimal length, by applying the classic cycle-joining technique. The key to the construction is the definition of a parent rule to construct a cycle-joining tree of asymmetric bracelets. Unfortunately, the parent rule does not generalize to larger alphabets. Furthermore, unlike the binary case, a cycle-joining tree does not immediately lead to a simple successor-rule when k >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document} unless the tree has certain properties. In this paper, we derive a parent rule to derive a cycle-joining tree of k-ary asymmetric bracelets. This leads to a successor rule that constructs asymptotically optimal k-ary orientable sequences in O(n) time per symbol using O(n) space. In the special case when n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document}, we provide a simple construction of k-ary orientable sequences of maximal length.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Successor Rule Framework for Constructing k-Ary de Bruijn Sequences and Universal Cycles
    Gabric, D.
    Sawada, J.
    Williams, A.
    Wong, D.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (01) : 679 - 687
  • [2] Generation of assembly sequences with k-ary operations
    Wang, Haixia
    Ceglarek, Dariusz J.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON ASSEMBLY AND MANUFACTURING, 2007, : 50 - +
  • [3] LOOPLESS GENERATION OF K-ARY TREE SEQUENCES
    KORSH, JF
    INFORMATION PROCESSING LETTERS, 1994, 52 (05) : 243 - 247
  • [4] Constructing de Bruijn sequences with co-lexicographic order: The k-ary Grandmama sequence
    Dragon, Patrick Baxter
    Hernandez, Oscar I.
    Sawada, Joe
    Williams, Aaron
    Wong, Dennis
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 72 : 1 - 11
  • [5] ON THE PSEUDORANDOM PROPERTIES OF k-ARY SIDEL'NIKOV SEQUENCES
    Liu, Huaning
    Ren, Yixin
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (05) : 1072 - 1085
  • [6] Construction of k-ary Pseudorandom Elliptic Curve Sequences
    WU Chenhuang1
    2.State Key Laboratory of Information Security/Institute of Software
    3.School of Mathematics and Statistics
    Wuhan University Journal of Natural Sciences, 2011, 16 (05) : 452 - 456
  • [7] ON ALPHABETICAL k-ARY TREES WITH RESTRICTED PATH LENGTH
    朱永津
    王建方
    A Monthly Journal of Science, 1981, (02) : 97 - 101
  • [8] Optimal parallel algorithm for generating k-ary trees
    Vajnovszki, V
    Phillips, C
    COMPUTERS AND THEIR APPLICATIONS: PROCEEDINGS OF THE ISCA 12TH INTERNATIONAL CONFERENCE, 1997, : 201 - 204
  • [9] NECKLACES OF BEADS IN K-COLORS AND K-ARY DEBRUIJN SEQUENCES
    FREDRICKSEN, H
    MAIORANA, J
    DISCRETE MATHEMATICS, 1978, 23 (03) : 207 - 210
  • [10] Constructing Orientable Sequences
    Mitchell, Chris J.
    Wild, Peter R.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4782 - 4789