The Dementia SomaSignal Test (dSST): A plasma proteomic predictor of 20-year dementia risk

被引:0
作者
Duggan, Michael R. [1 ]
Paterson, Clare [2 ]
Lu, Yifei [3 ]
Biegel, Hannah [2 ]
Dark, Heather E. [1 ]
Cordon, Jenifer [1 ]
Bilgel, Murat [1 ]
Kaneko, Naoto [4 ]
Shibayama, Masaki [4 ]
Kato, Shintaro [4 ,5 ]
Furuichi, Makio [4 ,5 ]
Waga, Iwao [4 ,5 ,6 ]
Hiraga, Keita [7 ]
Katsuno, Masahisa [7 ,8 ]
Nishita, Yukiko [9 ]
Otsuka, Rei [9 ]
Davatzikos, Christos [10 ]
Erus, Guray [10 ]
Loupy, Kelsey [2 ]
Simpson, Melissa [2 ]
Lewis, Alexandria [11 ]
Moghekar, Abhay [11 ]
Palta, Priya [12 ]
Gottesman, Rebecca F. [13 ]
Resnick, Susan M. [1 ]
Coresh, Josef [14 ,15 ]
Williams, Stephen A. [2 ]
Walker, Keenan A. [1 ]
机构
[1] NIA, Lab Behav Neurosci, NIH, NIH BRC BG RM 04B311,251 Bayview Blvd, Baltimore, MD 21224 USA
[2] Stand BioTools, Dept Clin & Res Dev, Boulder, CO USA
[3] Univ North Carolina Chapel Hill, Dept Epidemiol, Chapel Hill, NC USA
[4] NEC Solut Innovators Ltd, Koto Ku, Tokyo, Japan
[5] SkymatiX Inc, Chuo City, Tokyo 1030021, Japan
[6] Tohoku Univ, Wellbeing Design Inst Hlth, Aoba ku, Sendai, Japan
[7] Nagoya Univ, Grad Sch Med, Dept Neurol, Nagoya, Aichi, Japan
[8] Nagoya Univ, Grad Sch Med, Dept Clin Res Educ, Nagoya, Aichi, Japan
[9] Natl Ctr Geriatr & Gerontol, Dept Epidemiol Aging, Obu, Aichi, Japan
[10] Univ Penn, Perelman Sch Med, Artificial Intelligence Biomed Imaging Lab, Philadelphia, PA USA
[11] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD USA
[12] Univ North Carolina Chapel Hill, Dept Neurol, Chapel Hill, NC USA
[13] NINDS, Stroke Branch, Bethesda, MD USA
[14] New York Univ Grossman Sch Med, Dept Populat Hlth, New York, NY USA
[15] New York Univ Grossman Sch Med, Dept Med, New York, NY USA
基金
美国国家卫生研究院;
关键词
dementia; machine learning; prognosis; proteomics; ALZHEIMERS-DISEASE; OLDER-ADULTS; PATTERNS; AD; CLASSIFICATION; REGULARIZATION; PROGRESSION; ATROPHY; SCORE;
D O I
10.1002/alz.14549
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
INTRODUCTIONThere is an unmet need for tools to quantify dementia risk during its multi-decade preclinical/prodromal phase, given that current biomarkers predict risk over shorter follow-up periods and are specific to Alzheimer's disease.METHODSUsing high-throughput proteomic assays and machine learning techniques in the Atherosclerosis Risk in Communities study (n = 11,277), we developed the Dementia SomaSignal Test (dSST).RESULTSIn addition to outperforming existing plasma biomarkers, the dSST predicted mid-life dementia risk over a 20-year follow-up across two independent cohorts with different ethnic backgrounds (areas under the curve [AUCs]: dSST 0.68-0.70, dSST+age 0.75-0.81). In a separate cohort, the dSST was associated with longitudinal declines across multiple cognitive domains, accelerated brain atrophy, and elevated measures of neuropathology (as evidenced by positron emission tomography and plasma biomarkers).DISCUSSIONThe dSST is a cost-effective, scalable, and minimally invasive protein-based prognostic aid that can quantify risk up to two decades before dementia onset.Highlights The Dementia SomaSignal Test (dSST) predicts 20-year dementia risk across two independent cohorts. dSST outperforms existing plasma biomarkers in predicting multi-decade dementia risk. dSST predicts cognitive decline and accelerated brain atrophy in a third cohort. dSST is a prognostic aid that can predict dementia risk over two decades.
引用
收藏
页数:18
相关论文
共 52 条
[1]  
Sims J.R., Zimmer J.A., Evans C.D., Et al., Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial, JAMA, 330, 6, pp. 512-527, (2023)
[2]  
Dubois B., Epelbaum S., Nyasse F., Et al., Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study, Lancet Neurol, 17, 4, pp. 335-346, (2018)
[3]  
Sturchio A., Dwivedi A.K., Young C.B., Et al., High cerebrospinal amyloid-β 42 is associated with normal cognition in individuals with brain amyloidosis, EClinicalMedicine, 38, (2021)
[4]  
Smith R., Hagerstrom D., Pawlik D., Et al., Clinical utility of tau positron emission tomography in the diagnostic workup of patients with cognitive symptoms, JAMA Neurol, (2023)
[5]  
Boyle P.A., Wang T., Yu L., Et al., To what degree is late life cognitive decline driven by age-related neuropathologies?, Brain, 144, 7, pp. 2166-2175, (2021)
[6]  
Wilkins C.H., Windon C.C., Dilworth-Anderson P., Et al., Racial and ethnic differences in amyloid PET positivity in individuals with mild cognitive impairment or dementia: a secondary analysis of the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) cohort study, JAMA Neurol, 79, 11, pp. 1139-1147, (2022)
[7]  
Barnes L.L., Leurgans S., Aggarwal N.T., Et al., Mixed pathology is more likely in black than white decedents with Alzheimer dementia, Neurology, 85, 6, pp. 528-534, (2015)
[8]  
Palmqvist S., Tideman P., Cullen N., Et al., Prediction of future Alzheimer's disease dementia using plasma phospho-tau combined with other accessible measures, Nat Med, 27, 6, pp. 1034-1042, (2021)
[9]  
Silva-Spinola A., Lima M., Leitao M.J., Et al., Blood biomarkers in mild cognitive impairment patients: relationship between analytes and progression to Alzheimer disease dementia, Eur J Neurol, 30, 6, pp. 1565-1573, (2023)
[10]  
Ashton N.J., Brum W.S., Di Molfetta G., Et al., Diagnostic accuracy of a plasma phosphorylated tau 217 immunoassay for Alzheimer disease pathology, JAMA Neurol, 81, 3, pp. 255-263, (2024)