Nucleon Self-Energy Including Two-Loop Contributions

被引:2
作者
Conrad, Nils D. [1 ]
Gasparyan, Ashot M. [1 ]
Epelbaum, Evgeny [1 ]
机构
[1] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany
来源
16TH INTERNATIONAL CONFERENCE ON MESON-NUCLEON PHYSICS AND THE STRUCTURE OF THE NUCLEON, MENU 2023 | 2024年 / 303卷
关键词
CHIRAL PERTURBATION-THEORY; FEYNMAN-INTEGRALS;
D O I
10.1051/epjconf/202430302001
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The nucleon self-energy is calculated in SU(2) covariant chiral perturbation theory to study the pion mass dependence of the nucleon mass up to chiral order O(q(6)), i.e., including two-loop diagrams. The contributions of the diagrams are expressed by a small set of (scalar) master integrals. The extended-on-mass-shell (EOMS) renormalization scheme is applied by systematically subtracting infrared regular parts of the integrals (besides the divergences) to ensure that the renormalized results are consistent with the power counting. The master integrals are evaluated in two ways: Firstly, they are calculated by means of the chiral expansion in d dimensions, using the strategy of regions to differentiate between the infrared singular and regular part. This yields the physical nucleon mass in a 1/m-expansion and is in agreement with the infrared-renormalized result. Secondly, the master integrals are solved numerically without relying on the 1/m-expansion using the sector decomposition method.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Baryon chiral perturbation theory in manifestly Lorentz invariant form [J].
Becher, T ;
Leutwyler, H .
EUROPEAN PHYSICAL JOURNAL C, 1999, 9 (04) :643-671
[2]  
Becher T, 2001, J HIGH ENERGY PHYS
[3]   Asymptotic expansion of Feynman integrals near threshold [J].
Beneke, M ;
Smirnov, VA .
NUCLEAR PHYSICS B, 1998, 522 (1-2) :321-344
[4]   Chiral perturbation theory and baryon properties [J].
Bernard, Veronique .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 60, NO 1, 2008, 60 (01) :82-160
[5]   An automatized algorithm to compute infrared divergent multi-loop integrals [J].
Binoth, T ;
Heinrich, G .
NUCLEAR PHYSICS B, 2000, 585 (03) :741-759
[6]   pySecDec: A toolbox for the numerical evaluation of multi-scale integrals [J].
Borowka, S. ;
Heinrich, G. ;
Jahn, S. ;
Jones, S. P. ;
Kerner, M. ;
Schlenk, J. ;
Zirke, T. .
COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 :313-326
[7]   The chiral effective pion-nucleon Lagrangian of order p4 [J].
Fettes, N ;
Meissner, UG ;
Mojzis, M ;
Steininger, S .
ANNALS OF PHYSICS, 2000, 283 (02) :273-307
[8]   Renormalization of relativistic baryon chiral perturbation theory and power counting [J].
Fuchs, T ;
Gegelia, J ;
Japaridze, G ;
Scherer, S .
PHYSICAL REVIEW D, 2003, 68 (05)
[9]   Matching the heavy particle approach to relativistic theory [J].
Gegelia, J ;
Japaridze, G .
PHYSICAL REVIEW D, 1999, 60 (11)
[10]   HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters [J].
Huber, T. ;
Maitre, D. .
COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (02) :122-144