A Non-Local wave equation with General fractional derivatives and time delay

被引:1
作者
Atanackovic, Teodor M. [1 ]
机构
[1] Univ Novi Sad, Novi Sad 21000, Serbia
关键词
Non-local elasticity; Fractional derivative; time delay; Wave equation;
D O I
10.1016/j.ifacol.2024.08.217
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze, spatially one dimensional, non-local elastic body with deformation measure given in the form of General fractional derivative of Riesz type with truncated power-law kernel. It is assumed that stress at the point x and time t depends on the strain at point xi at time t - vertical bar x - xi vertical bar/c, where c is a constant having dimension of time. We formulate spatially one dimensional wave equation for such a body and show the influence of the parameter c on the solution. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:364 / 367
页数:4
相关论文
共 22 条
[1]   Impulsively fractional-order time-delayed gene regulatory networks: Existence and asymptotic stability [J].
Arjunan, M. Mallika ;
Abdeljawad, Thabet ;
Pratap, A. ;
Yousef, Ali .
ASIAN JOURNAL OF CONTROL, 2024, 26 (03) :1165-1177
[2]   Generalized wave equation in nonlocal elasticity [J].
Atanackovic, T. M. ;
Stankovic, B. .
ACTA MECHANICA, 2009, 208 (1-2) :1-10
[3]  
Atanackovic T.M., 2000, Theory of Elasticity for Scientists and Engineers
[4]   On a Generalized Wave Equation with Fractional Dissipation in Non-Local Elasticity [J].
Atanackovic, Teodor M. ;
Djekic, Diana Dolicanin ;
Gilic, Ersin ;
Kacapor, Enes .
MATHEMATICS, 2023, 11 (18)
[5]   One-dimensional nonlocal and gradient elasticity: Closed-form solution and size effect [J].
Benvenuti, E. ;
Simone, A. .
MECHANICS RESEARCH COMMUNICATIONS, 2013, 48 :46-51
[6]  
Caputo M., 2015, PROG FRACT DIFFER AP, V1, P73, DOI DOI 10.12785/PFDA/010201
[7]  
Challamel N., 2024, Fundamental problems in nanomechanics of structures.
[8]   A fractional nonlocal elastic model for lattice wave analysis [J].
Challamel, Noel ;
Atanackovic, Teodor ;
Zhang, Y. P. ;
Wang, C. M. .
MECHANICS RESEARCH COMMUNICATIONS, 2022, 126
[9]   Trends, directions for further research, and some open problems of fractional calculus [J].
Diethelm, Kai ;
Kiryakova, Virginia ;
Luchko, Yuri ;
Machado, J. A. Tenreiro ;
Tarasov, Vasily E. .
NONLINEAR DYNAMICS, 2022, 107 (04) :3245-3270
[10]  
Doetsch G, 1974, Introduction to the Theory and Application of the Laplace transformation, DOI DOI 10.1007/978-3-642-65690-3