Normalized ground state solutions of the biharmonic Schrodinger equation with general mass supercritical nonlinearities

被引:0
作者
Zhang, Ziheng [1 ]
Wang, Ying [2 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Tianjin Med Univ, Sch Publ Hlth, Tianjin 300070, Peoples R China
关键词
Nonlinear biharmonic Schrodinger equation; Normalized solutions; Mass supercritical; Nehari-Pohozaev identity; STABILITY;
D O I
10.1016/j.aml.2024.109415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the following problem {Delta(2)u+lambda u=g(u) in R-N, integral R-N|u|(2)dx=c, where N >= 5, c>0 and lambda is an element of R appears as a Lagrange multiplier. When g(u) satisfies a class of general mass supercritical conditions, we introduce one more constraint and consider the corresponding infimum. After showing that the new constraint is natural and verifying the compactness of the minimizing sequence, we obtain the existence of normalized ground state solutions. In this sense, the existing results are generalized and improved significantly.
引用
收藏
页数:6
相关论文
共 24 条
[1]   On the Orbital Stability for a Class of Nonautonomous NLS [J].
Bellazzini, Jacopo ;
Visciglia, Nicola .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (03) :1211-1230
[2]   NORMALIZED SOLUTIONS TO THE MIXED DISPERSION NONLINEAR SCHRODINGER EQUATION IN THE MASS CRITICAL AND SUPERCRITICAL REGIME [J].
Bonheure, Denis ;
Casteras, Jean-Baptiste ;
Gou, Tianxiang ;
Jeanjean, Louis .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) :2167-2212
[3]  
Chang XJ, 2023, Arxiv, DOI arXiv:2305.00327
[4]  
Chen WJ, 2023, Arxiv, DOI arXiv:2305.16565
[5]   Isolated unilateral oculomotor palsy caused by pure midbrain infarction: a case report [J].
Chen, Zhu-Ling ;
Zhu, Shi-Guo ;
Liu, Rong-Pei ;
Ma, Lu-Lu ;
Cui, Jian ;
Zeng, Guo-Ling ;
Zhang, Xiong ;
Wang, Jian-Yong ;
Huang, Shi-Shi .
INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2024, 134 (11) :1342-1345
[6]   Self-focusing with fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1437-1462
[7]  
IVANOV BA, 1983, FIZ NIZK TEMP+, V9, P845
[8]  
Ji C, 2023, J GEOM ANAL, V33, DOI 10.1007/s12220-023-01207-y
[9]  
Karpman V., 1996, PHYS REV E, V53, P1336
[10]   Stability of solitons described by nonlinear Schrodinger-type equations with higher-order dispersion [J].
Karpman, VI ;
Shagalov, AG .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 144 (1-2) :194-210