Computer-assisted diagnosis to improve diagnostic pathology: A review

被引:0
作者
Caputo, Alessandro [1 ,2 ]
Maffei, Elisabetta [1 ,2 ]
Gupta, Nalini [3 ]
Cima, Luca [4 ]
Merolla, Francesco [5 ]
Cazzaniga, Giorgio [6 ]
Pepe, Pietro [7 ]
Verze, Paolo [2 ,8 ]
Fraggetta, Filippo [9 ]
机构
[1] Univ Hosp San Giovanni Dio & Ruggi DAragona, Dept Pathol, Salerno, Italy
[2] Univ Salerno, Dept Med & Surg, Baronissi, Italy
[3] Postgrad Inst Med Educ & Res PGIMER, Dept Cytol & Gynecol Pathol, Chandigarh, India
[4] Univ & Hosp Trust Verona, Sect Pathol, Dept Diagnost & Publ Hlth, Verona, Italy
[5] Univ Molise, Dept Med & Hlth Sci V Tiberio, Campobasso, Italy
[6] Univ Milano Bicocca, IRCCS Fdn San Gerardo dei Tintori, Dept Med & Surg Pathol, Catania, Italy
[7] Cannizzaro Hosp, Dept Urol, Catania, Italy
[8] Univ Hosp San Giovanni Dio & Ruggi ADragona, Dept Urol, Salerno, Italy
[9] Gravina Hosp, Dept Pathol, Pathol Unit, Caltagirone, Italy
关键词
Artificial intelligence; computer vision; cytology; digital pathology; histology; WHOLE-SLIDE IMAGES; PROSTATE-CANCER; ARTIFICIAL-INTELLIGENCE; DIGITAL PATHOLOGY; NEURAL-NETWORK; BIOPSIES; VALIDATION; CARCINOMA; SYSTEM;
D O I
10.4103/ijpm.ijpm_339_24
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
With an increasing demand for accuracy and efficiency in diagnostic pathology, computer-assisted diagnosis (CAD) emerges as a prominent and transformative solution. This review aims to explore the practical applications, implications, strengths, and weaknesses of CAD applied to diagnostic pathology. A comprehensive literature search was conducted to include English-language studies focusing on CAD tools, digital pathology, and Artificial intelligence (AI) applications in pathology. The review underscores the transformative potential of CAD tools in pathology, particularly in streamlining diagnostic processes, reducing turnaround times, and augmenting diagnostic accuracy. It emphasizes the strides made in digital pathology, the integration of AI, and the promising prospects for prognostic biomarker discovery using computational methods. Additionally, ethical considerations regarding data privacy, equity, and trust in AI deployment are examined. CAD has the potential to revolutionize diagnostic pathology. The insights gleaned from this review offer a panoramic view of recent advancements. Ultimately, this review aims to guide future research, influence clinical practice, and inform policy-making by elucidating the promising horizons and potential pitfalls of integrating CAD tools in pathology.
引用
收藏
页码:3 / 10
页数:8
相关论文
共 124 条
[1]  
Angeloni M, 2024, bioRxiv, DOI [10.1101/2024.07.11.603091, 10.1101/2024.07.11.603091, DOI 10.1101/2024.07.11.603091]
[2]   Automated Gleason grading of prostate cancer tissue microarrays via deep learning [J].
Arvaniti, Eirini ;
Fricker, Kim S. ;
Moret, Michael ;
Rupp, Niels ;
Hermanns, Thomas ;
Fankhauser, Christian ;
Wey, Norbert ;
Wild, Peter J. ;
Ruschoff, Jan H. ;
Claassen, Manfred .
SCIENTIFIC REPORTS, 2018, 8
[3]   Role of AI and Histopathological Images in Detecting Prostate Cancer: A Survey [J].
Ayyad, Sarah M. ;
Shehata, Mohamed ;
Shalaby, Ahmed ;
Abou El-Ghar, Mohamed ;
Ghazal, Mohammed ;
El-Melegy, Moumen ;
Abdel-Hamid, Nahla B. ;
Labib, Labib M. ;
Ali, H. Arafat ;
El-Baz, Ayman .
SENSORS, 2021, 21 (08)
[4]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[5]   Computational pathology in 2030: a Delphi study forecasting the role of AI in pathology within the next decade [J].
Berbis, M. Alvaro ;
McClintock, David S. ;
Bychkov, Andrey ;
Van der Laak, Jeroen ;
Pantanowitz, Liron ;
Lennerz, Jochen K. ;
Cheng, Jerome Y. ;
Delahunt, Brett ;
Egevad, Lars ;
Eloy, Catarina ;
Farris III, Alton B. ;
Fraggetta, Filippo ;
del Moral, Raimundo Garcia ;
Hartman, Douglas J. ;
Herrmann, Markus D. ;
Hollemans, Eva ;
Iczkowski, Kenneth A. ;
Karsan, Aly ;
Kriegsmann, Mark ;
Salama, Mohamed E. ;
Sinard, John H. ;
Tuthill, J. Mark ;
Williams, Bethany ;
Casado-Sanchez, Cesar ;
Sanchez-Turrion, Victor ;
Luna, Antonio ;
Aneiros-Fernandez, Jose ;
Shen, Jeanne .
EBIOMEDICINE, 2023, 88
[6]   Evolution of anatomic pathology workload from 2011 to 2019 assessed in a regional hospital laboratory via 574,093 pathology reports [J].
Bonert, Michael ;
Zafar, Uzma ;
Maung, Raymond ;
El-Shinnawy, Ihab ;
Kak, Ipshita ;
Cutz, Jean-Claude ;
Naqvi, Asghar ;
Juergens, Rosalyn A. ;
Finley, Christian ;
Salama, Samih ;
Major, Pierre ;
Kapoor, Anil .
PLOS ONE, 2021, 16 (06)
[7]  
Bostwick DG, 1998, CANCER, V83, P732, DOI 10.1002/(SICI)1097-0142(19980815)83:4<732::AID-CNCR15>3.0.CO
[8]  
2-T
[9]   Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists [J].
Bulten, Wouter ;
Balkenhol, Maschenka ;
Belinga, Jean-Joel Awoumou ;
Brilhante, Americo ;
Cakir, Asli ;
Egevad, Lars ;
Eklund, Martin ;
Farre, Xavier ;
Geronatsiou, Katerina ;
Molinie, Vincent ;
Pereira, Guilherme ;
Roy, Paromita ;
Saile, Gunter ;
Salles, Paulo ;
Schaafsma, Ewout ;
Tschui, Joelle ;
Vos, Anne-Marie ;
van Boven, Hester ;
Vink, Robert ;
van der Laak, Jeroen ;
Hulsbergen-van der Kaa, Christina ;
Litjens, Geert .
MODERN PATHOLOGY, 2021, 34 (03) :660-671
[10]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241