Exact Formulas for the Increment of the Cost Functional in Optimal Control of Linear Balance Equation

被引:0
|
作者
Goncharova, Elena, V [1 ]
Pogodaev, Nikolay I. [1 ]
Staritsyn, Maksim S. [1 ]
机构
[1] RAS, SB, Matrosov Inst Syst Dynam & Control Theory, Irkutsk 664033, Russia
来源
BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS | 2025年 / 51卷
基金
俄罗斯科学基金会;
关键词
nonlocal balance law; optimal control; feedback control; necessary optimality conditions; numerical algorithms; PRINCIPLE;
D O I
10.26516/1997-7670.2025.51.3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a state-linear optimal control problem for a transport equation with a source term in the space of finite signed Borel measures. For this problem, a version of the classical Pontryagin principle (in the form of the minimum principle) is obtained for the first time. In addition, we propose an approach to enhance the latter based on a certain unconventional procedure of variational analysis, namely, on exact increment formulas, representing the difference in values of the objective functional for any pair of admissible controls, without neglecting residual terms of any expansion. The approach relies on the standard duality and results in a series of necessary optimality conditions of a non-classical, "feedback" type. A constructive consequence of the feedback optimality conditions is a method of successive approximations, devoid of any parameters of "descent depth".
引用
收藏
页码:3 / 20
页数:18
相关论文
共 50 条
  • [1] Optimal control of a linear elliptic equation with a suprenium norm functional
    Grund, T
    Rösch, A
    OPTIMIZATION METHODS & SOFTWARE, 2001, 15 (3-4) : 299 - 329
  • [2] Multitime optimal control for linear PDEs with curvilinear cost functional
    Udriste, Constantin
    Dinu, Simona
    Tevy, Ionel
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2013, 18 (01): : 87 - 100
  • [3] Optimal control of linear cost networks
    Ohlin, David
    Tegling, Emma
    Rantzer, Anders
    EUROPEAN JOURNAL OF CONTROL, 2024, 80
  • [4] Exact Dynamic Programming for Positive Systems With Linear Optimal Cost
    Li, Yuchao
    Rantzer, Anders
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) : 8738 - 8750
  • [5] Indefinite Linear-Quadratic Optimal Control of Mean-Field Stochastic Differential Equation With Jump Diffusion: An Equivalent Cost Functional Method
    Wang, Guangchen
    Wang, Wencan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (11) : 7449 - 7462
  • [6] Consensus control for linear systems with optimal energy cost
    Zhang, Han
    Hu, Xiaoming
    AUTOMATICA, 2018, 93 : 83 - 91
  • [7] On the Mixed-Integer Linear-Quadratic Optimal Control With Switching Cost
    De Marchi, Alberto
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (04): : 990 - 995
  • [8] Optimal Control of a Bilinear System with a Quadratic Cost Functional
    Korpeoglu, Seda Goktepe
    Kucuk, Ismail
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [9] ON THE OPTIMAL CONTROL FOR A SEMILINEAR EQUATION WITH COST DEPENDING ON THE FREE BOUNDARY
    Ildefonso Diaz, Jesus
    Mingazzini, Tommaso
    Manuel Ramos, Angel
    NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (04) : 605 - 615
  • [10] On the optimal control of a linear neutral differential equation arising in economics
    Boucekkine, Raouf
    Fabbri, Giorgio
    Pintus, Patrick
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2012, 33 (05) : 511 - 530