Aircraft Engine Fault Detection Algorithm Based on Multivariate Time Series Sensor Data

被引:0
作者
Bian, Hongning [1 ]
Zou, Qian [1 ]
Kong, Xinyi [1 ]
机构
[1] Jinan Vocat Coll, Jinan 250100, Shandong, Peoples R China
来源
2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024 | 2024年
关键词
Aircraft Engine; Fault Detection; Multivariate Time Series; Sensor Data;
D O I
10.1109/ICICI62254.2024.00107
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the rapidly evolving landscape of civil air transportation, ensuring the safety and reliability of aircraft engines remains a critical concern. This study presents a novel aircraft engine fault detection algorithm based on multivariate time series sensor data, with the aim of enhancing the reliability and safety of air transportation. The proposed algorithm utilizes advanced data analysis techniques and intelligent algorithms to accurately predict potential engine failures, thereby facilitating proactive maintenance and minimizing aircraft delays. The study reviews state-of-the-art methods in aircraft engine fault detection, highlighting advances in dynamic radius support vector data description, modified moving window kernel principal component analysis, hybrid extended Kalman filter, and cross-domain guided learning methods, among others. In addition, the study proposes a comprehensive methodology for aircraft engine fault detection that integrates sensor data acquisition, pre-processing, fault detection algorithms, and performance optimization using multivariate time series analysis. Experimental results demonstrate the effectiveness of the proposed algorithm in achieving high detection rates and specificity for known fault types, while addressing challenges related to computational complexity and generalization.
引用
收藏
页码:622 / 629
页数:8
相关论文
共 28 条
[1]   Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries The International Surgical Outcomes Study group [J].
Ahmad, T. ;
Bouwman, R. A. ;
Grigoras, I. ;
Aldecoa, C. ;
Hofer, C. ;
Hoeft, A. ;
Holt, P. ;
Fleisher, L. A. ;
Buhre, W. ;
Pearse, R. M. ;
Ferguson, Marissa ;
MacMahon, Michael ;
Shulman, Mark ;
Cherian, Ritchie ;
Currow, Helen ;
Kanathiban, Kathirgamanathan ;
Gillespie, David ;
Pathmanathan, Edward ;
Phillips, Katherine ;
Reynolds, Jenifer ;
Rowley, Joanne ;
Douglas, Jeanene ;
Kerridge, Ross ;
Garg, Sameer ;
Bennett, Michael ;
Jain, Megha ;
Alcock, David ;
Terblanche, Nico ;
Cotter, Rochelle ;
Leslie, Kate ;
Stewart, Marcelle ;
Zingerle, Nicolette ;
Clyde, Antony ;
Hambidge, Oliver ;
Rehak, Adam ;
Cotterell, Sharon ;
Huynh, Wilson Binh Quan ;
McCulloch, Timothy ;
Ben-Menachem, Erez ;
Egan, Thomas ;
Cope, Jennifer ;
Halliwell, Richard ;
Fellinger, Paul ;
Haisjackl, Markus ;
Haselberger, Simone ;
Holaubek, Caroline ;
Lichtenegger, Paul ;
Scherz, Florian ;
Schmid, Werner ;
Hoffer, Franz .
BRITISH JOURNAL OF ANAESTHESIA, 2016, 117 (05) :601-+
[2]  
[Anonymous], 2020, 2020 IEEE INT C AC S, P6874
[3]   Empirical mode decomposition and its variants: a review with applications in structural health monitoring [J].
Barbosh, Mohamed ;
Singh, Premjeet ;
Sadhu, Ayan .
SMART MATERIALS AND STRUCTURES, 2020, 29 (09)
[4]   Aircraft Fleet Health Monitoring with Anomaly Detection Techniques [J].
Basora, Luis ;
Bry, Paloma ;
Olive, Xavier ;
Freeman, Floris .
AEROSPACE, 2021, 8 (04)
[5]   An intelligent approach for data pre-processing and analysis in predictive maintenance with an industrial case study [J].
Bekar, Ebru Turanoglu ;
Nyqvist, Per ;
Skoogh, Anders .
ADVANCES IN MECHANICAL ENGINEERING, 2020, 12 (05)
[6]   Evaluation of CAN Bus Security Challenges [J].
Bozdal, Mehmet ;
Samie, Mohammad ;
Aslam, Sohaib ;
Jennions, Ian .
SENSORS, 2020, 20 (08)
[7]   Fault Detection of Aircraft Control System Based on Negative Selection Algorithm [J].
Chen, Jiei ;
Chen, Senyao ;
Ma, Cunbao ;
Jing, Zhengdong ;
Xu, Qingshan .
INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2020, 2020
[8]   A hybrid deep computation model for feature learning on aero-engine data: applications to fault detection [J].
Chen, Zhikui ;
Yuan, Xu ;
Sun, Mingyang ;
Gao, Jing ;
Li, Peng .
APPLIED MATHEMATICAL MODELLING, 2020, 83 :487-496
[9]   Neural network approximation [J].
DeVore, Ronald ;
Hanin, Boris ;
Petrova, Guergana .
ACTA NUMERICA, 2021, 30 :327-444
[10]   A Generalised Methodology for the Diagnosis of Aircraft Systems [J].
Ezhilarasu, Cordelia Mattuvarkuzhali ;
Skaf, Zakwan ;
Jennions, Ian K. .
IEEE ACCESS, 2021, 9 (11437-11454) :11437-11454