NOTES ON THE GEOMETRY OF COTANGENT BUNDLE AND UNIT COTANGENT SPHERE BUNDLE

被引:0
|
作者
Kacimi, Bouazza [1 ]
Kadi, Fatima Zohra [2 ]
Ozkan, Mustafa [3 ]
机构
[1] Univ Mascara, Dept Math, Mascara 29000, Algeria
[2] Univ Mascara, Dept Math, Lab oratory Quantum Phys & Math Modeling LPQ3M, Mascara 29000, Algeria
[3] Gazi Univ, Dept Math, TR-06500 Ankara, Turkiye
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2024年 / 73卷 / 03期
关键词
Unit cotangent sphere bundle; cotangent bundle; Sasaki metric; almost contact structure; TANGENT; MANIFOLDS; CURVATURE; METRICS;
D O I
10.31801/cfsuasmas.1431646
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (N, g) be a Riemannian manifold, by using the musical isomorphisms (sic) and (sic) induced by g, we built a bridge between the geometry of the tangent bundle TN (resp. the unit tangent sphere bundle T1N) equipped with the Sasaki metric g(S) (resp. the induced Sasaki metric (g) over bar (S)) and that of the cotangent bundle T*N (resp. the unit cotangent sphere bundle T*N-1) endowed with the Sasaki metric g((S) over tilde) (resp. the induced Sasaki metric (g) over tilde ((S) over tilde)). Moreover, we prove that T*N-1 carries a contact metric structure and study some of its properties.
引用
收藏
页码:845 / 859
页数:15
相关论文
共 50 条
  • [31] Remarks on the positivity of the cotangent bundle of a K3 surface
    Gounelas, Frank
    Ottem, John Christian
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2020, 4
  • [32] On metric connections with torsion on the cotangent bundle with modified Riemannian extension
    Bilen L.
    Gezer A.
    Journal of Geometry, 2018, 109 (1)
  • [33] Invariant differential forms on the first jet prolongation of the cotangent bundle
    Bejancu, A
    Encinas, LH
    Masqué, JM
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (03): : 421 - 442
  • [34] The cotangent bundle of K3 surfaces of degree two
    Anella, Fabrizio
    Horing, Andreas
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2023, 3
  • [35] Schottky uniformization and the symplectic structure of the cotangent bundle of a Teichmuller space
    Biswas, I
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 35 (01) : 57 - 62
  • [36] Intrinsic structure of the cotangent bundle of a locally Euclidean differential space
    Sniatycki, Jedrzej
    Cushman, Richard
    MATHEMATICS AND MECHANICS OF SOLIDS, 2025,
  • [37] Stability of Restrictions of the Cotangent Bundle of Irreducible Hermitian Symmetric Spaces of Compact Type
    Biswas, Indranil
    Chaput, Pierre-Emmanuel
    Mourougane, Christophe
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2019, 55 (02) : 283 - 318
  • [38] SOME RESEARCH NOTES ON LIFTS OF THE HSU- (4,2) STRUCTURE ON COTANGENT AND TANGENT BUNDLE
    Cayir, Hasim
    Bahadir, Ahmet
    Uzun, Betul Can
    JOURNAL OF SCIENCE AND ARTS, 2021, (03) : 763 - 782
  • [39] Quantum cohomology of the cotangent bundle of a flag variety as a Yangian Bethe algebra
    Gorbounov, V.
    Rimanyi, R.
    Tarasov, V.
    Varchenko, A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 74 : 56 - 86
  • [40] MODIFIED SYSTEMS FOUND BY SYMMETRY REDUCTION ON THE COTANGENT BUNDLE OF A LOOP GROUP
    MARSHALL, I
    JOURNAL OF GEOMETRY AND PHYSICS, 1995, 16 (04) : 305 - 326