Spatial metabolomics highlights metabolic reprogramming in acute myeloid leukemia mice through creatine pathway

被引:1
作者
Bao, Yucheng [1 ]
Qiao, Jing [1 ]
Gong, Wenjie [1 ]
Zhang, Ruihong [1 ]
Zhou, Yanting [1 ]
Xie, Yinyin [1 ]
Xie, Yuan [2 ]
He, Jiuming [3 ,4 ]
Yin, Tong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Inst Hematol, Natl Res Ctr Translat Med Shanghai, State Key Lab Med Genom,Ruijin Hosp,Sch Med, Shanghai 200025, Peoples R China
[2] Kansas City Univ, Coll Osteopath Med, Kansas City, MO 64106 USA
[3] Chinese Acad Med Sci & Peking Union Med Coll, State Key Lab Bioact Subst & Funct Nat Med, Inst Mat Med, Beijing 100050, Peoples R China
[4] NMPA Key Lab Safety Res & Evaluat Innovat Drug, Beijing 100050, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatial metabolomics; Acute myeloid leukemia; Metabolic reprogramming; Creatine; Slc6a8; Oxidative phosphorylation; Glycolysis; Metastasis; CANCER; CELLS; STEM; CROSSTALK; HALLMARKS; TARGETS; OMICS;
D O I
10.1016/j.apsb.2024.07.004
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Acute myeloid leukemia (AML) is recognized as an aggressive cancer that is characterized by significant metabolic reprogramming. Here, we applied spatial metabolomics to achieve highthroughput, in situ identification of metabolites within the liver metastases of AML mice. Alterations at metabolite and protein levels were further mapped out and validated by integrating untargeted metabolomics and proteomics. This study showed a downregulation in arginine's contribution to polyamine biosynthesis and urea cycle, coupled with an upregulation of the creatine metabolism. The upregulation of creatine synthetases Gatm and Gamt, as well as the creatine transporter Slc6a8, resulted in a marked accumulation of creatine within tumor foci. This process further enhances oxidative phosphorylation and glycolysis of leukemia cells, thereby boosting ATP production to foster proliferation and infiltration. Importantly, we discovered that inhibiting Slc6a8 can counter these detrimental effects, offering a new strategy for treating AML by targeting metabolic pathways. <feminine ordinal indicator> 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页码:4461 / 4477
页数:17
相关论文
共 67 条
[1]   Spatial metabolomics: from a niche field towards a driver of innovation [J].
Alexandrov, Theodore .
NATURE METABOLISM, 2023, 5 (09) :1443-1445
[2]   The effect of dietary creatine supplementation on skeletal muscle metabolism in congestive heart failure [J].
Andrews, R ;
Greenhaff, P ;
Curtis, S ;
Perry, A ;
Cowley, AJ .
EUROPEAN HEART JOURNAL, 1998, 19 (04) :617-622
[3]   Creatine kinase pathway inhibition alters GSK3 and WNT signaling in EVI1-positive AML [J].
Benajiba, Lina ;
Alexe, Gabriela ;
Su, Angela ;
Raffoux, Emmanuel ;
Soulier, Jean ;
Hemann, Michael T. ;
Hermine, Olivier ;
Itzykson, Raphael ;
Stegmaier, Kimberly ;
Puissant, Alexandre .
LEUKEMIA, 2019, 33 (03) :800-804
[4]   Total creatine in muscle: Imaging and quantification with proton MR spectroscopy [J].
Bottomley, PA ;
Lee, YH ;
Weiss, RG .
RADIOLOGY, 1997, 204 (02) :403-410
[5]   Arginine Signaling and Cancer Metabolism [J].
Chen, Chia-Lin ;
Hsu, Sheng-Chieh ;
Ann, David K. ;
Yen, Yun ;
Kung, Hsing-Jien .
CANCERS, 2021, 13 (14)
[6]   Crosstalk between autophagy and metabolism: implications for cell survival in acute myeloid leukemia [J].
Chen, Yongfeng ;
Chen, Jia ;
Zou, Zhenyou ;
Xu, Linglong ;
Li, Jing .
CELL DEATH DISCOVERY, 2024, 10 (01)
[7]   Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia [J].
Cole, Alicia ;
Wang, Zezhou ;
Coyaud, Etienne ;
Voisin, Veronique ;
Gronda, Marcela ;
Jitkova, Yulia ;
Mattson, Rachel ;
Hurren, Rose ;
Babovic, Sonja ;
Maclean, Neil ;
Restall, Ian ;
Wang, Xiaoming ;
Jeyaraju, Danny V. ;
Sukhai, Mahadeo A. ;
Prabha, Swayam ;
Bashir, Shaheena ;
Ramakrishnan, Ashwin ;
Leung, Elisa ;
Qia, Yi Hua ;
Zhang, Nianxian ;
Combes, Kevin R. ;
Ketela, Troy ;
Lin, Fengshu ;
Houry, Walid A. ;
Aman, Ahmed ;
Al-awar, Rima ;
Zheng, Wei ;
Wienholds, Erno ;
Xu, Chang Jiang ;
Dick, John ;
Wang, Jean C. Y. ;
Moffat, Jason ;
Minden, Mark D. ;
Eaves, Connie J. ;
Bader, Gary D. ;
Hao, Zhenyue ;
Kornblau, Steven M. ;
Raught, Brian ;
Schimmer, Aaron D. .
CANCER CELL, 2015, 27 (06) :864-876
[8]   TRPC1 and TRPC3 involvement in DMD physiopathology and as potential targets for treatment in complement to rAAV-microdystrophin [J].
Creismeas, A. ;
Gazaille, C. ;
Bourdon, A. ;
Lafoux, A. ;
Allais, M. ;
Le Razavet, V. ;
Ledevin, M. ;
Larcher, T. ;
Toumanianz, G. ;
Anegon, I. ;
Adjali, O. ;
Huchet, C. ;
Le Guiner, C. ;
Fraysse, B. .
NEUROMUSCULAR DISORDERS, 2021, 31 :S76-S76
[9]   Depletion of creatine phosphagen energetics with a covalent creatine kinase inhibitor [J].
Darabedian, Narek ;
Ji, Wenzhi ;
Fan, Mengyang ;
Lin, Shan ;
Seo, Hyuk-Soo ;
Vinogradova, Ekaterina V. V. ;
Yaron, Tomer M. M. ;
Mills, Evanna L. L. ;
Xiao, Haopeng ;
Senkane, Kristine ;
Huntsman, Emily M. M. ;
Johnson, Jared L. L. ;
Che, Jianwei ;
Cantley, Lewis C. C. ;
Cravatt, Benjamin F. F. ;
Dhe-Paganon, Sirano ;
Stegmaier, Kimberly ;
Zhang, Tinghu ;
Gray, Nathanael S. S. ;
Chouchani, Edward T. T. .
NATURE CHEMICAL BIOLOGY, 2023, 19 (07) :815-+
[10]   Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia [J].
de Beauchamp, Lucie ;
Himonas, Ekaterini ;
Helgason, G. Vignir .
LEUKEMIA, 2022, 36 (01) :1-12