Two maximum-based fixed-point methods for the generalized absolute value equation

被引:0
作者
Wang, Yapeng [1 ]
Mu, Xuewen [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710100, Shaanxi, Peoples R China
关键词
Fixed point; Matrix splitting; Optimal parameter; Generalized absolute value equation; ITERATION METHOD;
D O I
10.1007/s12190-024-02345-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By employing the expression |x|=2max(x,0)-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x|=2\max (x,0)-x$$\end{document}, this paper, for the first time, performs a matrix splitting of A+B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A+B$$\end{document} to design two fixed-point methods for solving the generalized absolute value equation Ax-B|x|=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax- B |x |= b$$\end{document}. Under suitable assumptions, we conduct the convergence analysis of these methods. Additionally, we investigate the parameter's effect on the second method's convergence rate, thereby determining the optimal parameter value. Finally, several numerical examples validate both the proposed methods' theoretical results and practical effectiveness.
引用
收藏
页码:3109 / 3124
页数:16
相关论文
共 21 条
  • [1] Ali R., 2022, INT J APPL COMPUT MA, V8, P123, DOI DOI 10.1007/S40819-022-01324-2
  • [2] Exploring two new iterative methods for solving absolute value equations
    Ali, Rashid
    Zhang, Zhao
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 6245 - 6258
  • [3] Two new fixed point iterative schemes for absolute value equations
    Ali, Rashid
    Pan, Kejia
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (01) : 303 - 314
  • [4] A globally and quadratically convergent method for absolute value equations
    Caccetta, Louis
    Qu, Biao
    Zhou, Guanglu
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (01) : 45 - 58
  • [5] On the SOR-like iteration method for solving absolute value equations
    Guo, Peng
    Wu, Shi-Liang
    Li, Cui-Xia
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 97 : 107 - 113
  • [6] Hageman LA., 1971, Am. Math. Month, V80, P92, DOI [10.2307/2319285, DOI 10.2307/2319285]
  • [7] SOR-like iteration method for solving absolute value equations
    Ke, Yi-Fen
    Ma, Chang-Feng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 195 - 202
  • [8] Liu JY, 2024, Arxiv, DOI arXiv:2405.16201
  • [9] A dimension expanded Newton-type method for absolute value equations
    Luo, Wei-Hua
    Guo, Jun
    Yin, Liang
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (04) : 3219 - 3233
  • [10] A generalized Newton method for absolute value equations
    Mangasarian, O. L.
    [J]. OPTIMIZATION LETTERS, 2009, 3 (01) : 101 - 108