AnisotropicBreast-ViT: Breast Cancer Classification in Ultrasound Images Using Anisotropic Filtering and Vision Transformer

被引:0
作者
Diniz, Joao Otavio Bandeira [1 ,2 ]
Ribeiro, Neilson P. [1 ,2 ]
Dias, Domingos A., Jr. [3 ]
da Cruz, Luana B. [3 ]
da Silva, Giovanni L. F. [2 ,4 ]
Gomes, Daniel L., Jr. [1 ]
de Paiva, Anselmo C. [2 ]
Silva, Aristofanes C. [2 ]
机构
[1] Fed Inst Maranhao IFMA, Innovat Factory, Sao Luis, Maranhao, Brazil
[2] Fed Univ Maranhao UFMA, Appl Comp Grp NCA, Sao Luis, Maranhao, Brazil
[3] Fed Univ Cariri UFCA, Juazeiro do Norte, Ceara, Brazil
[4] Dom Bosco Higher Educ Unit UNDB, Sao Luis, MA, Brazil
来源
INTELLIGENT SYSTEMS, BRACIS 2024, PT III | 2025年 / 15414卷
关键词
Breast Cancer; Ultrasound; Vision Transformer;
D O I
10.1007/978-3-031-79035-5_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast cancer classification in ultrasound images is a challenging and arduous task, primarily due to the quality of the images and the complexity of the lesions encountered. Early diagnosis of this pathology is known to increase patient survival chances. Therefore, computational methods have been developed to assist specialist physicians in this critical task. This study introduces AnisotropicBreast-ViT, a method that integrates anisotropic filtering, balanced data augmentation, and Vision Transformer to aid in the classification of breast ultrasound images. The proposed approach achieves promising results with an accuracy of 98.82%, specificity of 98.62%, sensitivity of 99.25%, precision of 97.08%, F1-score of 98.16%, and AUC-ROC of 0.989, surpassing current benchmarks in the field. These findings suggest that AnisotropicBreast-ViT has the potential to significantly improve breast cancer diagnosis, demonstrating its effectiveness and robustness in clinical applications.
引用
收藏
页码:95 / 109
页数:15
相关论文
共 31 条
[1]   Dataset of breast ultrasound images [J].
Al-Dhabyani, Walid ;
Gomaa, Mohammed ;
Khaled, Hussien ;
Fahmy, Aly .
DATA IN BRIEF, 2020, 28
[2]   An automatic approach for heart segmentation in CT scans through image processing techniques and Concat-U-Net [J].
Bandeira Diniz, Joao Otavio ;
Ferreira, Jonnison Lima ;
Carmona Cortes, Omar Andres ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 196
[3]   Esophagus segmentation from planning CT images using an atlas-based deep learning approach [J].
Bandeira Diniz, Joao Otavio ;
Ferreira, Jonnison Lima ;
Bandeira Diniz, Pedro Henrique ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 197
[4]   Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks [J].
Bandeira Diniz, Joao Otavio ;
Bandeira Diniz, Pedro Henrique ;
Azevedo Valente, Thales Levi ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso ;
Gattass, Marcelo .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 156 :191-207
[5]   Breast tumor classification through learning from noisy labeled ultrasound images [J].
Cao, Zhantao ;
Yang, Guowu ;
Chen, Qin ;
Chen, Xiaolong ;
Lv, Fengmao .
MEDICAL PHYSICS, 2020, 47 (03) :1048-1057
[6]   Automated breast cancer detection and classification using ultrasound images: A survey [J].
Cheng, H. D. ;
Shan, Juan ;
Ju, Wen ;
Guo, Yanhui ;
Zhang, Ling .
PATTERN RECOGNITION, 2010, 43 (01) :299-317
[7]  
Chollet F., 2018, Keras: The Python Deep Learning Library
[8]   Deep Convolutional Neural Networks for breast cancer screening [J].
Chougrad, Hiba ;
Zouaki, Hamid ;
Alheyane, Omar .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 157 :19-30
[9]   Automatic method for classifying COVID-19 patients based on chest X-ray images, using deep features and PSO-optimized XGBoost [J].
Dias Junior, Domingos Alves ;
da Cruz, Luana Batista ;
Bandeira Diniz, Joao Otavio ;
Franca da Silva, Giovanni Lucca ;
Braz Junior, Geraldo ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso ;
Nunes, Rodolfo Acatauassu ;
Gattass, Marcelo .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183
[10]  
Diniz J.O., AN 21 S BRAS COMP AP, P83