Advances in modeling analysis for multi-parameter bioreactor process control

被引:0
作者
Lin, Xin [1 ,2 ]
Li, Ke [1 ,2 ]
Wu, Changzhe [1 ,2 ,3 ]
Zhang, Cheng [1 ,2 ]
Zhang, Guanghao [1 ,2 ]
Huo, Xiaolin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing Key Lab Bioelectromagnetism, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Southern Med Univ, Zhujiang Hosp, Guangzhou 510280, Guangdong, Peoples R China
基金
国家重点研发计划;
关键词
Bioreactor; Modeling; Process control; Parameter optimization; Bioartificial liver; Hepatocyte; COMPUTATIONAL FLUID-DYNAMICS; CELL-CULTURE; CONTROL STRATEGIES; PREDICTIVE CONTROL; DIGITAL TWINS; SHEAR-STRESS; SOFT SENSOR; IN-LINE; LIVER; GROWTH;
D O I
10.1007/s12257-024-00174-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The multi-parameter intricate process control of bioreactor systems poses an urgent challenge to cell culture. It is feasible to simulate and analyze the implications of each parameter on the culture process, comprehend the correlation between key variables involved in the cell culture process, and establish the framework for multi-parameter collaborative regulation through the utilization of bioreactor modeling. This paper reviews the approaches for model implementation of multi-parameter process control, along with the analysis and optimization techniques of mathematical models related to physiological processes, culture environments, and bioreactor structures involved in bioengineering, tissue engineering, or hepatocyte culture processes. It then covers remaining obstacles and potential for using the digital twin. In view of this, the review anticipates process optimization and control of the bioreactor hepatocyte in vitro culture system and the bioartificial liver clinical support system, intending to enhance the understanding of the hepatocyte culture process and meet the requirements associated with bioartificial liver therapy for the amount and quality of hepatocytes.
引用
收藏
页码:235 / 261
页数:27
相关论文
共 134 条
[81]   Bioprocessing in the Digital Age: The Role of Process Models [J].
Narayanan, Harini ;
Luna, Martin F. ;
von Stosch, Moritz ;
Bournazou, Mariano Nicolas Cruz ;
Polotti, Gianmarco ;
Morbidelli, Massimo ;
Butte, Alessandro ;
Sokolov, Michael .
BIOTECHNOLOGY JOURNAL, 2020, 15 (01)
[82]   Global sensitivity analysis for a perfusion bioreactor based on CFD modelling [J].
Nascu, Ioana ;
Sebastia-Saez, Daniel ;
Chen, Tao ;
Nascu, Ioan ;
Du, Wenli .
COMPUTERS & CHEMICAL ENGINEERING, 2022, 163
[83]   Advances in bioreactor control for production of biotherapeutic products [J].
Nikita, Saxena ;
Mishra, Somesh ;
Gupta, Keshari ;
Runkana, Venkataramana ;
Gomes, James ;
Rathore, Anurag S. .
BIOTECHNOLOGY AND BIOENGINEERING, 2023, 120 (05) :1189-1214
[84]   A mechanobiological mathematical model of liver metabolism [J].
Nikmaneshi, Mohammad R. ;
Firoozabadi, Bahar ;
Munn, Lance L. .
BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (09) :2861-2874
[85]   History and Evolution of Modeling in Biotechnology: Modeling & Simulation, Application and Hardware Performance [J].
Noll, Philipp ;
Henkel, Marius .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :3309-3323
[86]   Integration of reinforcement learning and model predictive control to optimize semi-batch bioreactor [J].
Oh, Tae Hoon ;
Park, Hyun Min ;
Kim, Jong Woo ;
Lee, Jong Min .
AICHE JOURNAL, 2022, 68 (06)
[87]   Leveraging knowledge engineering and machine learning for microbial bio-manufacturing [J].
Oyetunde, Tolutola ;
Bao, Forrest Sheng ;
Chen, Jiung-Wen ;
Martin, Hector Garcia ;
Tang, Yinjie J. .
BIOTECHNOLOGY ADVANCES, 2018, 36 (04) :1308-1315
[88]   Advanced Model-Based Control Strategies for the Intensification of Upstream and Downstream Processing in mAb Production [J].
Papathanasiou, Maria M. ;
Quiroga-Campano, Ana L. ;
Steinebach, Fabian ;
Elviro, Montana ;
Mantalaris, Athanasios ;
Pistikopoulos, Efstratios N. .
BIOTECHNOLOGY PROGRESS, 2017, 33 (04) :966-988
[89]   Debottlenecking and reformulating feed media for improved CHO cell growth and titer by data-driven and model-guided analyses [J].
Park, Seo-Young ;
Choi, Dong-Hyuk ;
Song, Jinsung ;
Park, Uiseon ;
Cho, Hyeran ;
Hong, Bee Hak ;
Silberberg, Yaron R. ;
Lee, Dong-Yup .
BIOTECHNOLOGY JOURNAL, 2023, 18 (12)
[90]   Bioprocess digital twins of mammalian cell culture for advanced biomanufacturing [J].
Park, Seo-Young ;
Park, Cheol-Hwan ;
Choi, Dong-Hyuk ;
Hong, Jong Kwang ;
Lee, Dong-Yup .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2021, 33 (33)