TOPOLOGICAL MEAN DIMENSION OF INDUCED SYSTEMS

被引:0
作者
Burguet, David [1 ]
Shi, Ruxi [2 ]
机构
[1] Univ Picardie Jules Verne, CNRS, F-80000 Amiens, France
[2] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200438, Peoples R China
关键词
DYNAMICS;
D O I
10.1090/tran/9407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. For a topological system with positive topological entropy, we show that the induced transformation on the set of probability measures endowed with the weak-& lowast; topology has infinite topological mean dimension. As an application, it answers a question of Kloeckner [J. Topol. Anal. 4 (2012), pp. 203-235]. We also estimate the rate of divergence of the entropy with respect to the Wasserstein distance when the scale goes to zero.
引用
收藏
页码:3085 / 3103
页数:19
相关论文
共 23 条
[21]   Macroscopic dimension of the lp-ball with respect to the lq-norm [J].
Tsukamoto, Masaki .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2008, 48 (02) :445-454
[22]   MEAN DIMENSION OF FULL SHIFTS [J].
Tsukamoto, Masaki .
ISRAEL JOURNAL OF MATHEMATICS, 2019, 230 (01) :183-193
[23]  
Zhou X., ARXIV