TOPOLOGICAL MEAN DIMENSION OF INDUCED SYSTEMS

被引:0
作者
Burguet, David [1 ]
Shi, Ruxi [2 ]
机构
[1] Univ Picardie Jules Verne, CNRS, F-80000 Amiens, France
[2] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200438, Peoples R China
关键词
DYNAMICS;
D O I
10.1090/tran/9407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. For a topological system with positive topological entropy, we show that the induced transformation on the set of probability measures endowed with the weak-& lowast; topology has infinite topological mean dimension. As an application, it answers a question of Kloeckner [J. Topol. Anal. 4 (2012), pp. 203-235]. We also estimate the rate of divergence of the entropy with respect to the Wasserstein distance when the scale goes to zero.
引用
收藏
页码:3085 / 3103
页数:19
相关论文
共 23 条
[1]   TOPOLOGICAL DYNAMICS OF TRANSFORMATIONS INDUCED ON SPACE OF PROBABILITY MEASURES [J].
BAUER, W ;
SIGMUND, K .
MONATSHEFTE FUR MATHEMATIK, 1975, 79 (02) :81-92
[2]   Quantitative concentration inequalities for empirical measures on non-compact spaces [J].
Bolley, Francois ;
Guillin, Arnaud ;
Villani, Cedric .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (3-4) :541-593
[3]   Mean dimension of continuous cellular automata [J].
Burguet, David ;
Shi, Ruxi .
ISRAEL JOURNAL OF MATHEMATICS, 2024, 259 (01) :311-346
[4]  
Coornaert, 2005, COURS SPECIALISES SP, V14
[5]   QUASI-FACTORS OF ZERO ENTROPY SYSTEMS [J].
GLASNER, E ;
WEISS, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (03) :665-686
[6]  
Gournay A, 2011, HOUSTON J MATH, V37, P1227
[7]  
Gromov M., 1999, MATH PHYS ANAL GEOM, V2, P323
[8]  
Jin JQ21 Lei, 2021, MEAN DIMENSION PRODU
[9]  
Katok A., 1980, PUBL MATH IH S, V51, P137, DOI [10.1007/bf02684777, DOI 10.1007/BF02684777]
[10]   Independence in topological and C-dynamics [J].
Kerr, David ;
Li, Hanfeng .
MATHEMATISCHE ANNALEN, 2007, 338 (04) :869-926