A Central Limit Theorem for Random Disc-Polygons in Smooth Convex Discs

被引:0
作者
Fodor, Ferenc [1 ]
Papvari, Daniel I. [2 ]
机构
[1] Univ Szeged, Bolya Inst, Dept Geometry, Arad Vertanuk Tere 1, H-6720 Szeged, Hungary
[2] Univ Szeged, Bolya Inst, Arad Vertanuk Tere 1, H-6720 Szeged, Hungary
关键词
Central limit theorem; Random disc-polygons; Spindle convexity; Stein's method; RANDOM POLYTOPES; POINTS; BOUNDS; BALL;
D O I
10.1007/s00454-024-00701-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we prove a quantitative central limit theorem for the area of uniform random disc-polygons in smooth convex discs whose boundary is C+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>2_+$$\end{document}. We use Stein's method and the asymptotic lower bound for the variance of the area proved by Fodor, Gr & uuml;nfelder and V & iacute;gh (Doc Math 27: 1015-1029, 2022).
引用
收藏
页数:18
相关论文
共 34 条