A Central Limit Theorem for Random Disc-Polygons in Smooth Convex Discs

被引:0
作者
Fodor, Ferenc [1 ]
Papvari, Daniel I. [2 ]
机构
[1] Univ Szeged, Bolya Inst, Dept Geometry, Arad Vertanuk Tere 1, H-6720 Szeged, Hungary
[2] Univ Szeged, Bolya Inst, Arad Vertanuk Tere 1, H-6720 Szeged, Hungary
关键词
Central limit theorem; Random disc-polygons; Spindle convexity; Stein's method; RANDOM POLYTOPES; POINTS; BOUNDS; BALL;
D O I
10.1007/s00454-024-00701-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we prove a quantitative central limit theorem for the area of uniform random disc-polygons in smooth convex discs whose boundary is C+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>2_+$$\end{document}. We use Stein's method and the asymptotic lower bound for the variance of the area proved by Fodor, Gr & uuml;nfelder and V & iacute;gh (Doc Math 27: 1015-1029, 2022).
引用
收藏
页数:18
相关论文
共 34 条
  • [1] M-strongly convex subsets and their generating sets
    Balashov, MV
    Polovinkin, ES
    [J]. SBORNIK MATHEMATICS, 2000, 191 (1-2) : 25 - 60
  • [2] Few points to generate a random polytope
    Barany, I
    Dalla, L
    [J]. MATHEMATIKA, 1997, 44 (88) : 325 - 331
  • [3] CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES
    BARANY, I
    LARMAN, DG
    [J]. MATHEMATIKA, 1988, 35 (70) : 274 - 291
  • [4] Random points and lattice points in convex bodies
    Barany, Imre
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 45 (03) : 339 - 365
  • [5] POISSON POLYTOPES
    Barany, Imre
    Reitzner, Matthias
    [J]. ANNALS OF PROBABILITY, 2010, 38 (04) : 1507 - 1531
  • [6] Random inscribed polytopes in projective geometries
    Besau, Florian
    Rosen, Daniel
    Thaele, Christoph
    [J]. MATHEMATISCHE ANNALEN, 2021, 381 (3-4) : 1345 - 1372
  • [7] Ball-polyhedra
    Bezdek, Karoly
    Langi, Zsolt
    Naszodi, Marton
    Papez, Peter
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (02) : 201 - 230
  • [8] A new method of normal approximation
    Chatterjee, Sourav
    [J]. ANNALS OF PROBABILITY, 2008, 36 (04) : 1584 - 1610
  • [9] Fodor F, 2014, ADV APPL PROBAB, V46, P899
  • [10] Fodor F, 2022, DOC MATH, V27, P1015