Artificial intelligence-powered innovations in periodontal diagnosis: a new era in dental healthcare

被引:0
作者
Jundaeng, Jarupat [1 ,2 ,3 ]
Chamchong, Rapeeporn [4 ]
Nithikathkul, Choosak [1 ,2 ]
机构
[1] Mahasarakham Univ, Fac Med, Ph D Hlth Sci Program, Maha Sarakham, Thailand
[2] Mahasarakham Univ, Fac Med, Trop Hlth Innovat Res Unit, Maha Sarakham, Thailand
[3] Fang Hosp, Dent Dept, Chiang Mai, Thailand
[4] Mahasarakham Univ, Fac Informat, Dept Comp Sci, Maha Sarakham, Thailand
来源
FRONTIERS IN MEDICAL TECHNOLOGY | 2025年 / 6卷
关键词
artificial intelligence; periodontal disease; periodontitis diagnosis; panoramic radiographs; convolutional neural networks (CNNs); COMPROMISED TEETH; CLASSIFICATION; NUTRITION;
D O I
10.3389/fmedt.2024.1469852
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background The aging population is increasingly affected by periodontal disease, a condition often overlooked due to its asymptomatic nature. Despite its silent onset, periodontitis is linked to various systemic conditions, contributing to severe complications and a reduced quality of life. With over a billion people globally affected, periodontal diseases present a significant public health challenge. Current diagnostic methods, including clinical exams and radiographs, have limitations, emphasizing the need for more accurate detection methods. This study aims to develop AI-driven models to enhance diagnostic precision and consistency in detecting periodontal disease.Methods We analyzed 2,000 panoramic radiographs using image processing techniques. The YOLOv8 model segmented teeth, identified the cemento-enamel junction (CEJ), and quantified alveolar bone loss to assess stages of periodontitis.Results The teeth segmentation model achieved an accuracy of 97%, while the CEJ and alveolar bone segmentation models reached 98%. The AI system demonstrated outstanding performance, with 94.4% accuracy and perfect sensitivity (100%), surpassing periodontists who achieved 91.1% accuracy and 90.6% sensitivity. General practitioners (GPs) benefitted from AI assistance, reaching 86.7% accuracy and 85.9% sensitivity, further improving diagnostic outcomes.Conclusions This study highlights that AI models can effectively detect periodontal bone loss from panoramic radiographs, outperforming current diagnostic methods. The integration of AI into periodontal care offers faster, more accurate, and comprehensive treatment, ultimately improving patient outcomes and alleviating healthcare burdens.
引用
收藏
页数:16
相关论文
共 49 条
[1]   Prediction of Dental Implants Using Machine Learning Algorithms [J].
Alharbi, Mafawez T. ;
Almutiq, Mutiq M. .
JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
[2]   Big Data and Machine Learning in Health Care [J].
Beam, Andrew L. ;
Kohane, Isaac S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13) :1317-1318
[3]  
blog.paperspace, Paperspace Blog
[4]  
Bureau of Dental Health Department of Health, 2023, National Oral Health Survey Report
[5]   Sample-size calculations for Cohen's kappa [J].
Cantor, AB .
PSYCHOLOGICAL METHODS, 1996, 1 (02) :150-153
[6]   Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis [J].
Chang, Hyuk-Joon ;
Lee, Sang-Jeong ;
Yong, Tae-Hoon ;
Shin, Nan-Young ;
Jang, Bong-Geun ;
Kim, Jo-Eun ;
Huh, Kyung-Hoe ;
Lee, Sam-Sun ;
Heo, Min-Suk ;
Choi, Soon-Chul ;
Kim, Tae-Il ;
Yi, Won-Jin .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]   Artificial intelligence in dentistry-A review [J].
Ding, Hao ;
Wu, Jiamin ;
Zhao, Wuyuan ;
Matinlinna, Jukka P. ;
Burrow, Michael F. ;
Tsoi, James K. H. .
FRONTIERS IN DENTAL MEDICINE, 2023, 4
[8]   Periodontitis in US Adults National Health and Nutrition Examination Survey 2009-2014 [J].
Eke, Paul I. ;
Thornton-Evans, Gina O. ;
Wei, Liang ;
Borgnakke, Wenche S. ;
Dye, Bruce A. ;
Genco, Robert J. .
JOURNAL OF THE AMERICAN DENTAL ASSOCIATION, 2018, 149 (07) :576-+
[9]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[10]   Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 [J].
Vos, Theo ;
Abajobir, Amanuel Alemu ;
Abbafati, Cristiana ;
Abbas, Kaja M. ;
Abate, Kalkidan Hassen ;
Abd-Allah, Foad ;
Abdulle, Abdishakur M. ;
Abebo, Teshome Abuka ;
Abera, Semaw Ferede ;
Aboyans, Victor ;
Abu-Raddad, Laith J. ;
Ackerman, Ilana N. ;
Adamu, Abdu Abdullahi ;
Adetokunboh, Olatunji ;
Afarideh, Mohsen ;
Afshin, Ashkan ;
Agarwal, Sanjay Kumar ;
Aggarwal, Rakesh ;
Agrawal, Anurag ;
Agrawal, Sutapa ;
Kiadaliri, Aliasghar Ahmad ;
Ahmadieh, Hamid ;
Ahmed, Muktar Beshir ;
Aichour, Amani Nidhal ;
Aichour, Ibtihel ;
Aichour, Miloud Taki Eddine ;
Aiyar, Sneha ;
Akinyemi, Rufus Olusola ;
Akseer, Nadia ;
Al Lami, Faris Hasan ;
Alahdab, Fares ;
Al-Aly, Ziyad ;
Alam, Khurshid ;
Alam, Noore ;
Alam, Tahiya ;
Alasfoor, Deena ;
Alene, Kefyalew Addis ;
Ali, Raghib ;
Alizadeh-Navaei, Reza ;
Alkerwi, Ala'a ;
Alla, Francois ;
Allebeck, Peter ;
Allen, Christine ;
Al-Maskari, Fatma ;
Al-Raddadi, Rajaa ;
Alsharif, Ubai ;
Alsowaidi, Shirina ;
Altirkawi, Khalid A. ;
Amare, Azmeraw T. ;
Amini, Erfan .
LANCET, 2017, 390 (10100) :1211-1259