A Comparative Study of Two Allen-Cahn Models for Immiscible N-Phase Flows by Using a Consistent and Conservative Lattice Boltzmann Method

被引:0
作者
Zhan, Chengjie [1 ,2 ,3 ]
Liu, Xi [1 ,2 ,3 ]
Chai, Zhenhua [1 ,2 ,3 ]
Shi, Baochang [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Interdisciplinary Res Math & Appl Sci, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Model comparisons; Allen-Cahn models; N-phase flows; lattice Boltzmann method; INCOMPRESSIBLE FLUIDS; MULTIPHASE FLOWS; 2-PHASE FLOWS; COMPUTATION; EFFICIENT; SYSTEMS;
D O I
10.4208/cicp.OA-2023-0228
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we conduct a detailed comparison between two second-orderconservative Allen-Cahn (AC) models [Model A: Zhenget al., Phys. Rev. E 101, 0433202(2020) andModel B: Mirjalili and Mani, J. Comput. Phys. 498, 112657 (2024)] for theimmiscibleN-phase flows. Mathematically, these two AC equations can be proved tobe equivalent under some approximate conditions. However, the effects of these ap-proximations are unclear from the theoretical point of view, and would be considerednumerically. To this end, we propose a consistent and conservative lattice Boltzmannmethod for the AC models forN-phase flows, and present some numerical compar-isons of accuracy and stability between these two AC models. The results show thatboth two AC models have good performances in accuracy, but theModel Bis more sta-ble for the realistic complexN-phase flows, although there is an adjustable parameterin theModel A.
引用
收藏
页码:850 / 876
页数:27
相关论文
共 70 条
[51]   Consistent, energy-conserving momentum transport for simulations of two-phase flows using the phase field equations [J].
Mirjalili, Shahab ;
Mani, Ali .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426
[52]   Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation [J].
Ren, Feng ;
Song, Baowei ;
Sukop, Michael C. ;
Hu, Haibao .
PHYSICAL REVIEW E, 2016, 94 (02)
[53]  
Rowlinson J. S., 1982, Molecular theory of capillarity
[54]   LATTICE BOLTZMANN MODEL FOR SIMULATING FLOWS WITH MULTIPLE PHASES AND COMPONENTS [J].
SHAN, XW ;
CHEN, HD .
PHYSICAL REVIEW E, 1993, 47 (03) :1815-1819
[55]   Sharp interface tracking using the phase-field equation [J].
Sun, Y. ;
Beckermann, C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 220 (02) :626-653
[56]   LATTICE BOLTZMANN SIMULATION OF NONIDEAL FLUIDS [J].
SWIFT, MR ;
OSBORN, WR ;
YEOMANS, JM .
PHYSICAL REVIEW LETTERS, 1995, 75 (05) :830-833
[57]   The vortex-driven dynamics of droplets within droplets [J].
Tiribocchi, A. ;
Montessori, A. ;
Lauricella, M. ;
Bonaccorso, F. ;
Succi, S. ;
Aime, S. ;
Milani, M. ;
Weitz, D. A. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[58]   Monodisperse double emulsions generated from a microcapillary device [J].
Utada, AS ;
Lorenceau, E ;
Link, DR ;
Kaplan, PD ;
Stone, HA ;
Weitz, DA .
SCIENCE, 2005, 308 (5721) :537-541
[59]  
Wang H., 2019, Capillarity, V2, P33, DOI 10.26804/capi.2019.03.01
[60]   A versatile lattice Boltzmann model for immiscible ternary fluid flows [J].
Yu, Yuan ;
Liu, Haihu ;
Liang, Dong ;
Zhang, Yonghao .
PHYSICS OF FLUIDS, 2019, 31 (01)