A Comparative Study of Two Allen-Cahn Models for Immiscible N-Phase Flows by Using a Consistent and Conservative Lattice Boltzmann Method

被引:0
作者
Zhan, Chengjie [1 ,2 ,3 ]
Liu, Xi [1 ,2 ,3 ]
Chai, Zhenhua [1 ,2 ,3 ]
Shi, Baochang [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Interdisciplinary Res Math & Appl Sci, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Model comparisons; Allen-Cahn models; N-phase flows; lattice Boltzmann method; INCOMPRESSIBLE FLUIDS; MULTIPHASE FLOWS; 2-PHASE FLOWS; COMPUTATION; EFFICIENT; SYSTEMS;
D O I
10.4208/cicp.OA-2023-0228
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we conduct a detailed comparison between two second-orderconservative Allen-Cahn (AC) models [Model A: Zhenget al., Phys. Rev. E 101, 0433202(2020) andModel B: Mirjalili and Mani, J. Comput. Phys. 498, 112657 (2024)] for theimmiscibleN-phase flows. Mathematically, these two AC equations can be proved tobe equivalent under some approximate conditions. However, the effects of these ap-proximations are unclear from the theoretical point of view, and would be considerednumerically. To this end, we propose a consistent and conservative lattice Boltzmannmethod for the AC models forN-phase flows, and present some numerical compar-isons of accuracy and stability between these two AC models. The results show thatboth two AC models have good performances in accuracy, but theModel Bis more sta-ble for the realistic complexN-phase flows, although there is an adjustable parameterin theModel A.
引用
收藏
页码:850 / 876
页数:27
相关论文
共 70 条
[1]   Conservative phase-field lattice-Boltzmann model for ternary fluids [J].
Abadi, Reza Haghani Hassan ;
Rahimian, Mohammad Hassan ;
Fakhari, Abbas .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 374 :668-691
[2]   Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods [J].
Abadi, Reza Haghani Hassan ;
Fakhari, Abbas ;
Rahimian, Mohammad Hassan .
PHYSICAL REVIEW E, 2018, 97 (03)
[3]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[4]   Enhanced Oil Recovery: An Update Review [J].
Alvarado, Vladimir ;
Manrique, Eduardo .
ENERGIES, 2010, 3 (09) :1529-1575
[5]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[6]  
[Anonymous], 1996, European J. Appl. Math., DOI DOI 10.1017/S0956792500002369
[7]  
Badalassi H.D., 2003, Journal of Computational Physics, V190
[8]   Computation of multiphase systems with phase field models [J].
Badalassi, VE ;
Ceniceros, HD ;
Banerjee, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 190 (02) :371-397
[9]   Cahn-Hilliard/Navier-Stokes Model for the Simulation of Three-Phase Flows [J].
Boyer, F. ;
Lapuerta, C. ;
Minjeaud, S. ;
Piar, B. ;
Quintard, M. .
TRANSPORT IN POROUS MEDIA, 2010, 82 (03) :463-483
[10]   Study of a three component Cahn-Hilliard flow model [J].
Boyer, Franck ;
Lapuerta, Celine .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (04) :653-687