Integrated Photonic Convolution Accelerator Empowered by Thin-Film Lithium Niobate Modulators

被引:0
作者
Zhou, Haojun [1 ]
Wu, Bo [1 ]
Zhang, Shiji [1 ]
Xu, Mengyue [2 ]
Wang, Jingyi [2 ]
Zhou, Hailong [1 ]
Cai, Xinlun [2 ]
Dong, Jianji [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, State Key Lab Optoelect Mat & Technol, Guangzhou 510000, Peoples R China
关键词
Convolution; Optical device fabrication; Optical modulation; Optical computing; Training; Frequency modulation; Kernel; High-speed optical techniques; Frequency-domain analysis; Radio frequency; Optical convolutional neural networks; thin-film lithium niobate; integrated photonics; GENERATION;
D O I
10.1109/LPT.2025.3541048
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The current optical convolution architectures are facing challenges related to limited scalability, excessive data redundancy and restricted processing bandwidth. In this work, we introduce an integrated photonic convolution accelerator (IPCA) empowered by high-speed thin-film lithium niobate (LN) modulators. Consequently, data replication redundancy is free and Fourier transform is avoided, which paves the way for highly efficient convolution scaling. We implement convolution in an optical frequency spacing of 8 GHz with a power consumption of only 52.9 mW. Optical neural networks of different parameter sizes are constructed across various complex tasks. Given its advantages to address energy consumption and computing power challenges inherent to current AI advancements, our method heralds a pivotal shift in upcoming optical computing hardware architectures.
引用
收藏
页码:385 / 388
页数:4
相关论文
共 23 条
[1]   An on-chip photonic deep neural network for image classification [J].
Ashtiani, Farshid ;
Geers, Alexander J. ;
Aflatouni, Firooz .
NATURE, 2022, 606 (7914) :501-+
[2]   Microcomb-based integrated photonic processing unit [J].
Bai, Bowen ;
Yang, Qipeng ;
Shu, Haowen ;
Chang, Lin ;
Yang, Fenghe ;
Shen, Bitao ;
Tao, Zihan ;
Wang, Jing ;
Xu, Shaofu ;
Xie, Weiqiang ;
Zou, Weiwen ;
Hu, Weiwei ;
Bowers, John E. E. ;
Wang, Xingjun .
NATURE COMMUNICATIONS, 2023, 14 (01)
[3]   Digital Electronics and Analog Photonics for Convolutional Neural Networks (DEAP-CNNs) [J].
Bangari, Viraj ;
Marquez, Bicky A. ;
Miller, Heidi B. ;
Tait, Alexander N. ;
Nahmias, Mitchell A. ;
de Lima, Thomas Ferreira ;
Peng, Hsuan-Tung ;
Prucnal, Paul R. ;
Shastri, Bhavin J. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01)
[4]   Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers [J].
Brueckerhoff-Plueckelmann, Frank ;
Feldmann, Johannes ;
Gehring, Helge ;
Zhou, Wen ;
Wright, C. David ;
Bhaskaran, Harish ;
Pernice, Wolfram .
NANOPHOTONICS, 2022, 11 (17) :4063-4072
[5]  
Chang L.-Y. S., 2022, arXiv
[6]   Highlighting photonics: looking into the next decade [J].
Chen, Zhigang ;
Segev, Mordechai .
ELIGHT, 2021, 1 (01)
[7]   Photonic Matrix Computing: From Fundamentals to Applications [J].
Cheng, Junwei ;
Zhou, Hailong ;
Dong, Jianji .
NANOMATERIALS, 2021, 11 (07)
[8]   Experimental realization of convolution processing in photonic synthetic frequency dimensions [J].
Fan, Lingling ;
Wang, Kai ;
Wang, Heming ;
Dutt, Avik ;
Fan, Shanhui .
SCIENCE ADVANCES, 2023, 9 (32)
[9]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[10]   Al-assisted on-chip nanophotonic convolver based on silicon metasurface [J].
Liao, Kun ;
Gan, Tianyi ;
Hu, Xiaoyong ;
Gong, Qihuang .
NANOPHOTONICS, 2020, 9 (10) :3315-3322