One-decoy-state quantum key distribution with advantage distillation based on planar-lightwave-circuit-integration modules

被引:1
作者
Zhu, Jiali [1 ,2 ]
Zhou, Xingyu [1 ,2 ]
Ding, Huajian [1 ,2 ]
Liu, Jingyang [1 ,2 ]
Zhang, Chunhui [1 ,2 ]
Li, Jian [1 ,2 ]
An, Junming [3 ]
Wang, Qin [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Natl Engn Res Ctr, Telecommun & Networks, Nanjing 210003, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, Key Lab Optoelect Mat & Devices, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
intensity modulator; VOA; optical variable attenuator; BS; beam splitter; APD; inindium gallium arsenic (InGaAs) single photon detector; SECURITY;
D O I
10.1103/PhysRevA.111.012608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonics integrated circuits provide a stable, compact and robust platform for the implementation of quantum key distribution (QKD), which can generate information-theoretic secure keys between distant parties. Here, we present a high-speed QKD tests with silica planar lightwave circuits based asymmetric Mach-Zehnder interferometer modules. To further enhance system performance and reduce system complexity, we employ the advantage distillation (AD) algorithm alongside the one-decoy method. The AD algorithm can effectively extract strongly correlated bit pairs from weakly correlated bit pairs, thereby significantly improving the key rate over long distances, where traditional post-processing methods fail to generate keys. With a clock rate of 625 MHz, our system achieves composable secret key rates of 3.32 Mbps at 2 dB loss and 1.85 kbps at 18 dB loss, respectively. These results represent the first experimental validation of AD algorithm, and pave the way for the development of QKD networks with photonic integration.
引用
收藏
页数:7
相关论文
共 38 条
  • [1] Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics
    Avesani, M.
    Calderaro, L.
    Schiavon, M.
    Stanco, A.
    Agnesi, C.
    Santamato, A.
    Zahidy, M.
    Scriminich, A.
    Foletto, G.
    Contestabile, G.
    Chiesa, M.
    Rotta, D.
    Artiglia, M.
    Montanaro, A.
    Romagnoli, M.
    Sorianello, V
    Vedovato, F.
    Vallone, G.
    Villoresi, P.
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [2] Bennett C. H., 1984, P IEEE INT C COMP SY, P175, DOI [DOI 10.1103/REVMODPHYS.74.145, DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
  • [3] Secure Quantum Key Distribution over 421 km of Optical Fiber
    Boaron, Alberto
    Boso, Gianluca
    Rusca, Davide
    Vulliez, Cedric
    Autebert, Claire
    Caloz, Misael
    Perrenoud, Matthieu
    Gras, Gaetan
    Bussieres, Felix
    Li, Ming-Jun
    Nolan, Daniel
    Martin, Anthony
    Zbinden, Hugo
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (19)
  • [4] Simple 2.5 GHz time-bin quantum key distribution
    Boaron, Alberto
    Korzh, Boris
    Houlmann, Raphael
    Boso, Gianluca
    Rusca, Davide
    Gray, Stuart
    Li, Ming-Jun
    Nolan, Daniel
    Martin, Anthony
    Zbinden, Hugo
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (17)
  • [5] Advances in silica planar lightwave circuits
    Doerr, Christopher Richard
    Okamoto, Katsunari
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) : 4763 - 4789
  • [6] A hybrid integrated quantum key distribution transceiver chip
    Dolphin, Joseph A.
    Paraiso, Taofiq K.
    Du, Han
    Woodward, Robert I.
    Marangon, Davide G.
    Shields, Andrew J.
    [J]. NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [7] Ultra-narrowband interference circuits enable low-noise and high-rate photon counting for InGaAs/InP avalanche photodiodes
    Fan, Yuanbin
    Shi, Tingting
    Ji, Weijie
    Zhou, Lai
    Ji, Yang
    Yuan, Zhiliang
    [J]. OPTICS EXPRESS, 2023, 31 (05): : 7515 - 7522
  • [8] INFORMATION EXCLUSION-PRINCIPLE FOR COMPLEMENTARY OBSERVABLES
    HALL, MJW
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (17) : 3307 - 3311
  • [9] Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer
    Honjo, T
    Inoue, K
    Takahashi, H
    [J]. OPTICS LETTERS, 2004, 29 (23) : 2797 - 2799
  • [10] Practical measurement-device-independent quantum key distribution with advantage distillation
    Hu, Li-Wen
    Zhang, Chun-Mei
    Li, Hong-Wei
    [J]. QUANTUM INFORMATION PROCESSING, 2023, 22 (01)