Layered Ti3C2Tx MXene heterostructured with V2O5 nanoparticles for enhanced room temperature ammonia sensing

被引:0
作者
Liang, Jiran [1 ,2 ]
Han, Yu [1 ]
Chen, Hao [1 ]
Zhang, Yixuan [1 ]
Gao, Xiaoping [3 ]
机构
[1] Tianjin Univ, Sch Microelect, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Imaging & Sensing Microelect Techn, Tianjin 300072, Peoples R China
[3] Gansu Acad Sci, Key Lab Sensor & Sensing Technol, Lanzhou 730000, Gansu, Peoples R China
关键词
2D MXene; NH3; sensor; GAS SENSOR; VANADIUM PENTOXIDE; NH3; SENSOR; PERFORMANCE; OXIDATION; CAPTURER; PROPERTY; WORKING;
D O I
10.1016/j.jallcom.2024.177798
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To enhance ammonia sensing at room temperature (25 degrees C), Two-dimensional transition metal carbonyl nitride (Ti3C2Tx MXene) modified by vanadium pentoxide nanoparticle (V2O5) is synthesized by hydrothermal method. The effects of weight ratio on the microstructure and ammonia sensing performance at room temperature are studied. The results indicate that when the weight percentage of V2O5 is 25 %, V2O5 nanoparticles with an average size of 90.33 nm are produced on the surface and between the layers of the two-dimensional MXene. The prepared MXene/V2O5 composites sensor has a good response (12.12) to 10 ppm NH3. The enhanced sensing performance can be attributed to the modification of V2O5 nanoparticles as well as the catalytic effect and the formation of heterojunction. The doped V2O5 nanoparticles open up the unstratified portion of MXene and catalyze the chemisorption of oxygen and oxidation of NH3. The difference in Fermi level between twodimensional MXene and V2O5 drives the charge transfer at the heterojunction interface, enriching the electrons on the surface of V2O5, thus improving the sensitivity. Density functional theory suggests that the composite adsorption system is more stable and has lower NH3 adsorption energy. This work provides a feasible route to develop high-performance gas sensors with MXene-based composites.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Noble metal decorated Ti3C2Tx MXene for room temperature SO2 detection
    Shilpa, M. P.
    Ashadevi, K. S.
    Shetty, Shivakumar Jagadish
    Bhat, Saideep Shirish
    Naresh, Nalajala
    Mishra, Vikash
    Waikar, Maqsood R.
    Sonkawade, Rajendra G.
    Gurumurthy, S. C.
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 388
  • [22] High performance humidity sensing property of Ti3C2Tx MXene-derived Ti3C2Tx/K2Ti4O9 composites
    Wu, Jinlei
    Lu, Po
    Dai, Jianxun
    Zheng, Chuantao
    Zhang, Tong
    Yu, William W.
    Zhang, Yu
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 326
  • [23] Enhanced gas sensing properties of V2O5 nanowires decorated with SnO2 nanoparticles to ethanol at room temperature
    Wang, Ruibing
    Yang, Shuang
    Deng, Rong
    Chen, Wen
    Liu, Yueli
    Zhang, Han
    Zakharova, Galina S.
    RSC ADVANCES, 2015, 5 (51): : 41050 - 41058
  • [24] Pt1/4Pd separation modified Ti3C2TX MXene for hydrogen detection at room temperature
    Wang, Lei
    Xiao, Zhikun
    Yao, Xinqi
    Yu, Xinhai
    Tu, Shan-Tung
    Chen, Shijian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (77) : 30205 - 30217
  • [25] Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing
    Wu, Dihua
    Wu, Mengyao
    Yang, Jiehui
    Zhang, Huaiwei
    Xie, Kefeng
    Lin, Cheng-Te
    Yu, Aimin
    Yu, Jinhong
    Fu, Li
    MATERIALS LETTERS, 2019, 236 : 412 - 415
  • [26] V2CTx and Ti3C2Tx MXenes Nanosheets for Gas Sensing
    Wu, Meng
    An, Yipeng
    Yang, Ru
    Tao, Zhenhua
    Xia, Qixun
    Hu, Qianku
    Li, Mian
    Chen, Ke
    Zhang, Zhanying
    Huang, Qing
    Ma, Shu-hong
    Zhou, Aiguo
    ACS APPLIED NANO MATERIALS, 2021, 4 (06) : 6257 - 6268
  • [27] Room Temperature Ammonia Sensors With Enhanced Sensitivity Based on CuO/Ti3C2Tx/Graphene Composites
    Li, Quanfu
    Xu, Minhua
    Wei, Xiaoni
    Chen, Zhencheng
    IEEE SENSORS JOURNAL, 2025, 25 (05) : 7991 - 7999
  • [28] Au-decorated In2O3 nanospheres/exfoliated Ti3C2Tx MXene nanosheets for highly sensitive formaldehyde gas sensing at room temperature
    Liu, Miao
    Sun, Ruiyang
    Sima, Zenghui
    Song, Peng
    Ding, Yongling
    Wang, Qi
    APPLIED SURFACE SCIENCE, 2022, 605
  • [29] Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene
    Han Dan
    Liu Zhi-Hua
    Liu Lu-Lu
    Han Xiao-Mei
    Liu Dong-Ming
    Zhuo Kai
    Sang Sheng-Bo
    ACTA PHYSICA SINICA, 2022, 71 (01)
  • [30] Room temperature NH3 sensing properties and humidity influence of Ti3C2Tx and Ag-Ti3C2Tx in an oxygen-free environment
    Wu, Hao
    Yu, Jun
    Yao, Guanyu
    Li, Zhongzhou
    Zou, Wenjing
    Li, Xiaogan
    Zhu, Huichao
    Huang, Zhengxing
    Tang, Zhenan
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 369