Sparse Channel Estimation in IRS-Assisted Massive MIMO Cognitive Radio Systems

被引:1
作者
Agarwal, Agrim [1 ]
Mishra, Amrita [1 ]
Ray, Ashirwad [2 ]
Das, Priyanka [1 ]
机构
[1] Int Inst Informat Technol Bangalore IIIT B, Networking & Commun Res Lab, Bengaluru 560100, India
[2] Indian Inst Sci IISc, Bengaluru 560012, India
基金
国家重点研发计划;
关键词
Channel estimation; Estimation; Massive MIMO; Vectors; Uplink; Interference; Accuracy; Bayesian learning; underlay cognitive radio; intelligent reflective surfaces; millimeter wave; Cramer-Rao bounds; INTELLIGENT REFLECTING SURFACE; RESOURCE-ALLOCATION; PERFORMANCE;
D O I
10.1109/TCOMM.2024.3435452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes novel Bayesian learning approaches for sparse channel estimation in a multi-user millimeter-wave massive multiple-input multiple-output underlay cognitive radio system. The intelligent reflecting surfaces (IRS)-aided secondary network adopts a two-phase transmission protocol comprising of silent and estimation phases. During the silent phase, the secondary base station(SBS) captures primary network pilot transmissions to estimate the cascaded channel between primary users and the SBS. Next, the estimation phase considers two pilot design policies with an inherent estimation accuracy and spectral efficiency trade-off, for cascaded channel estimation with respect to the secondary users, IRS, and SBS. Further, the associated hybrid and marginalized Cram & eacute;r-Rao bounds are developed to benchmark the efficacy of proposed estimation schemes. Simulation results demonstrate the superior performance of the proposed approaches in comparison to existing compressed sensing methods such as orthogonal matching pursuit and subspace multi-user joint channel estimation.
引用
收藏
页码:200 / 215
页数:16
相关论文
共 48 条
[1]   Sparse Bayesian Learning-based Channel Estimation for IRS-aided Millimeter Wave Massive MIMO Systems [J].
Agarwal, Agrim ;
Mishra, Amrita ;
Das, Priyanka .
2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
[2]   Multi-Cell Massive MIMO Uplink With Underlay Spectrum Sharing [J].
Al-Hraishawi, Hayder ;
Baduge, Gayan Amarasuriya Aruma ;
Hien Quoc Ngo ;
Larsson, Erik G. .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2019, 5 (01) :119-137
[3]  
[Anonymous], 2020, document ITU-R m.2370-0
[4]   Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications [J].
Bjornson, Emil ;
Wymeersch, Henk ;
Matthiesen, Bho ;
Popovski, Petar ;
Sanguinetti, Luca ;
de Carvalho, Elisabeth .
IEEE SIGNAL PROCESSING MAGAZINE, 2022, 39 (02) :135-158
[5]   Efficient Resource Allocation for IoT Cellular Networks in the Presence of Inter-Band Interference [J].
Chae, Sung Ho ;
Jeon, Sang-Woon ;
Jeong, Cheol .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (06) :4299-4308
[6]   Channel Estimation for Reconfigurable Intelligent Surface Aided Multi-User mmWave MIMO Systems [J].
Chen, Jie ;
Liang, Ying-Chang ;
Cheng, Hei Victor ;
Yu, Wei .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (10) :6853-6869
[7]   Intelligent Reflecting Surface: A Programmable Wireless Environment for Physical Layer Security [J].
Chen, Jie ;
Liang, Ying-Chang ;
Pei, Yiyang ;
Guo, Huayan .
IEEE ACCESS, 2019, 7 :82599-82612
[8]   Massive MIMO Beamforming With Transmit Diversity for High Mobility Wireless Communications [J].
Chen, Xuhong ;
Lu, Jiaxun ;
Fan, Pingyi ;
Ben Letaief, Khaled .
IEEE ACCESS, 2017, 5 :23032-23045
[9]  
Claudino L, 2022, Journal of Computer and Communications, V10, P1, DOI 10.4236/jcc.2022.108001
[10]   Sparse solutions to linear inverse problems with multiple measurement vectors [J].
Cotter, SF ;
Rao, BD ;
Engan, K ;
Kreutz-Delgado, K .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) :2477-2488