CD-UDepth: Complementary dual-source information fusion for underwater monocular depth estimation

被引:0
作者
Guo, Jiawei [1 ]
Ma, Jieming [1 ]
Sun, Feiyang [1 ]
Gao, Zhiqiang [2 ]
Garcia-Fernandez, angel F. [3 ,4 ]
Liang, Hai-Ning [5 ]
Zhu, Xiaohui [1 ]
Ding, Weiping [6 ]
机构
[1] Xian Jiaotong Liverpool Univ XJTLU, Sch Adv Technol, Suzhou 215000, Jiangsu, Peoples R China
[2] Wenzhou Kean Univ, Coll Sci Math & Technol, Dept Comp Sci, Wenzhou 325060, Zhejiang, Peoples R China
[3] UNIV LIVERPOOL, Dept Elect Engn & Elect, LIVERPOOL L69 3BX, England
[4] Univ Nebrija, ARIES Ctr, Madrid 28015, Spain
[5] Hong Kong Univ Sci & Technol Guangzhou, Computat Media & Arts Thrust, Informat Hub, Guangzhou 511453, Peoples R China
[6] Nantong Univ, Sch Artificial Intelligence & Comp Sci, Nantong 226019, Peoples R China
关键词
Monocular depth estimation; Underwater imaging; Information fusion; Deep learning;
D O I
10.1016/j.inffus.2025.102961
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Underwater depth estimation is crucial for marine applications such as autonomous navigation and robotics. However, monocular depth estimation in underwater environments remains challenging due to the rapid attenuation of the red light spectrum in deep waters, causing bluish-green color distortion, while suspended particles and limited illumination lead to blurry effects. These underwater degradations severely affect the performance of RGB-based depth estimation methods, particularly in background regions. To overcome the limitations of color-based depth estimation techniques in underwater scenarios, this paper proposes a novel dual-source depth fusion framework leveraging color and light attenuation information. First, an innovative input space is designed inspired by the principle of depth-dependent light transmission in underwater environments. This input space enhances robustness against color distortion and improves the capacity to capture depth information, particularly in blurry underwater regions. Subsequently, we develop an adaptive fusion module to optimize the strengths of both RGB and this new input space across varying underwater conditions. This module employs a novel confidence-based mechanism to dynamically assess the reliability of depth information from each source on a per-pixel basis. By leveraging a learned confidence map, it can adaptively weigh and fuse the contributions of RGB and the new input space. This strategy enables optimal depth estimation across diverse underwater scenarios. Extensive experiments on multiple challenging datasets demonstrate that our method consistently outperforms current state-of-the-art monocular depth estimation techniques in various subaqueous environments.
引用
收藏
页数:13
相关论文
共 67 条
  • [1] Attention Attention Everywhere: Monocular Depth Prediction with Skip Attention
    Agarwal, Ashutosh
    Arora, Chetan
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5850 - 5859
  • [2] The design and performance of GRD onboard the GECAM satellite
    An, Z. H.
    Sun, X. L.
    Zhang, D. L.
    Yang, S.
    Li, X. Q.
    Wen, X. Y.
    Gong, K.
    Liang, X. H.
    Liu, X. J.
    Liu, Y. Q.
    Li, Y. G.
    Xiong, S. L.
    Xu, Y. B.
    Zhang, Fan
    Zhao, X. Y.
    Cai, C.
    Chang, Z.
    Chen, G.
    Chen, C.
    Du, Y. Y.
    Feng, P. Y.
    Gao, M.
    Gao, R.
    Guo, D. Y.
    He, J. J.
    Hou, D. J.
    Li, C. Y.
    Li, G.
    Li, L.
    Li, X. F.
    Li, M. S.
    Lu, F. J.
    Lu, H.
    Meng, B.
    Peng, W. X.
    Shi, F.
    Wang, H.
    Wang, J. Z.
    Wang, Y. S.
    Wang, H. Z.
    Wen, X.
    Xiao, S.
    Xu, Y. P.
    Yang, J. W.
    Yi, Q. B.
    Zhang, S. N.
    Zhang, C. Y.
    Zhang, C. M.
    Zhang, Fei
    Zhao, Y.
    [J]. RADIATION DETECTION TECHNOLOGY AND METHODS, 2022, 6 (01) : 43 - 52
  • [3] Color Balance and Fusion for Underwater Image Enhancement
    Ancuti, Codruta O.
    Ancuti, Cosmin
    De Vleeschouwer, Christophe
    Bekaert, Philippe
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 379 - 393
  • [4] Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges
    Awan, Khalid Mahmood
    Shah, Peer Azmat
    Iqbal, Khalid
    Gillani, Saira
    Ahmad, Waqas
    Nam, Yunyoung
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2019, 2019
  • [5] Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset
    Berman, Dana
    Levy, Deborah
    Avidan, Shai
    Treibitz, Tali
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (08) : 2822 - 2837
  • [6] LocalBins: Improving Depth Estimation by Learning Local Distributions
    Bhat, Shariq Farooq
    Alhashim, Ibraheem
    Wonka, Peter
    [J]. COMPUTER VISION - ECCV 2022, PT I, 2022, 13661 : 480 - 496
  • [7] AdaBins: Depth Estimation Using Adaptive Bins
    Bhat, Shariq Farooq
    Alhashim, Ibraheem
    Wonka, Peter
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4008 - 4017
  • [8] Carion Nicolas, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12346), P213, DOI 10.1007/978-3-030-58452-8_13
  • [9] Distortion-Aware Monocular Depth Estimation for Omnidirectional Images
    Chen, Hong-Xiang
    Li, Kunhong
    Fu, Zhiheng
    Li, Mengyi
    Chen, Zonghao
    Guo, Yulan
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 (28) : 334 - 338
  • [10] Chen Weida, 2023, 2023 13th International Conference on Information Science and Technology (ICIST), P40, DOI 10.1109/ICIST59754.2023.10367166