Precision Medicine in Cardiovascular Disease Prevention: Clinical Validation of Multi-Ancestry Polygenic Risk Scores in a US Cohort

被引:0
|
作者
Ponikowska, Malgorzata [1 ,2 ]
Di Domenico, Paolo [1 ]
Bolli, Alessandro [1 ]
Busby, George Bartholomew [1 ]
Perez, Emma [1 ,3 ]
Botta, Giordano [1 ]
机构
[1] Allelica Inc, San Francisco, CA 94105 USA
[2] Med Univ Gdansk, Fac Med, Dept Biol & Med Genet, PL-80210 Gdansk, Poland
[3] Brigham & Womens Hosp, Boston, MA 02115 USA
关键词
polygenic risk score; ancestry-specific polygenic risk score; coronary artery disease; coronary artery disease polygenic risk score; PRS; CAD; CAD PRS; precision cardiovascular care; GENETIC RISK; ASSOCIATION; VARIANTS; POLYMORPHISMS; CHOLESTEROL; GUIDELINES; STATINS; COMMON; ALPHA;
D O I
10.3390/nu17050926
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Background: Polygenic risk score (PRS) quantifies the cumulative effects of common genetic variants across the genome, including both coding and non-coding regions, to predict the risk of developing common diseases. In cardiovascular medicine, PRS enhances risk stratification beyond traditional clinical risk factors, offering a precision medicine approach to coronary artery disease (CAD) prevention. This study evaluates the predictive performance of a multi-ancestry PRS framework for cardiovascular risk assessment using the All of Us (AoU) short-read whole-genome sequencing dataset comprising over 225,000 participants. Methods: We developed PRSs for lipid traits (LDL-C, HDL-C, triglycerides) and cardiometabolic conditions (type 2 diabetes, hypertension, atrial fibrillation) and constructed two metaPRSs: one integrating lipid and cardiometabolic PRSs (risk factor metaPRS) and another incorporating CAD PRSs in addition to these risk factors (risk factor + CAD metaPRS). Predictive performance was evaluated separately for each trait-specific PRS and for both metaPRSs to assess their effectiveness in CAD risk prediction across diverse ancestries. Model predictive performance, including calibration, was assessed separately for each ancestry group, ensuring that all metrics were ancestry-specific and that PRSs remain generalizable across diverse populations Results: PRSs for lipids and cardiometabolic conditions demonstrated strong predictive performance across ancestries. The risk factors metaPRS predicted CAD risk across multiple ancestries. The addition of a CAD-specific PRS to the risk factors metaPRS improved predictive performance, highlighting a genetic component in CAD etiopathology that is not fully captured by traditional risk factors, whether clinically measured or genetically inferred. Model calibration and validation across ancestries confirmed the broad applicability of PRS-based approaches in multi-ethnic populations. Conclusion: PRS-based risk stratification provides a reliable, ancestry-inclusive framework for personalized cardiovascular disease prevention, enabling better targeted interventions such as pharmacological therapy and lifestyle modifications. By incorporating genetic information from both coding and non-coding regions, PRSs refine risk prediction across diverse populations, advancing the integration of genomics into precision medicine for common diseases
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations
    Niall J. Lennon
    Leah C. Kottyan
    Christopher Kachulis
    Noura S. Abul-Husn
    Josh Arias
    Gillian Belbin
    Jennifer E. Below
    Sonja I. Berndt
    Wendy K. Chung
    James J. Cimino
    Ellen Wright Clayton
    John J. Connolly
    David R. Crosslin
    Ozan Dikilitas
    Digna R. Velez Edwards
    QiPing Feng
    Marissa Fisher
    Robert R. Freimuth
    Tian Ge
    Joseph T. Glessner
    Adam S. Gordon
    Candace Patterson
    Hakon Hakonarson
    Maegan Harden
    Margaret Harr
    Joel N. Hirschhorn
    Clive Hoggart
    Li Hsu
    Marguerite R. Irvin
    Gail P. Jarvik
    Elizabeth W. Karlson
    Atlas Khan
    Amit Khera
    Krzysztof Kiryluk
    Iftikhar Kullo
    Katie Larkin
    Nita Limdi
    Jodell E. Linder
    Ruth J. F. Loos
    Yuan Luo
    Edyta Malolepsza
    Teri A. Manolio
    Lisa J. Martin
    Li McCarthy
    Elizabeth M. McNally
    James B. Meigs
    Tesfaye B. Mersha
    Jonathan D. Mosley
    Anjene Musick
    Bahram Namjou
    Nature Medicine, 2024, 30 (2) : 480 - 487
  • [22] Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations
    Lennon, Niall J.
    Kottyan, Leah C.
    Kachulis, Christopher
    Abul-Husn, Noura S.
    Arias, Josh
    Belbin, Gillian
    Below, Jennifer E.
    Berndt, Sonja I.
    Chung, Wendy K.
    Cimino, James J.
    Clayton, Ellen Wright
    Connolly, John J.
    Crosslin, David R.
    Dikilitas, Ozan
    Edwards, Digna R. Velez
    Feng, Qiping
    Fisher, Marissa
    Freimuth, Robert R.
    Ge, Tian
    Berndt, Sonja
    Hirschhorn, Joel
    Loos, Ruth
    Glessner, Joseph T.
    Gordon, Adam S.
    Patterson, Candace
    Hakonarson, Hakon
    Harden, Maegan
    Harr, Margaret
    Hirschhorn, Joel N.
    Hoggart, Clive
    Hsu, Li
    Irvin, Marguerite R.
    Jarvik, Gail P.
    Karlson, Elizabeth W.
    Khan, Atlas
    Khera, Amit
    Kiryluk, Krzysztof
    Kullo, Iftikhar
    Larkin, Katie
    Limdi, Nita
    Linder, Jodell E.
    Loos, Ruth J. F.
    Luo, Yuan
    Malolepsza, Edyta
    Manolio, Teri A.
    Martin, Lisa J.
    Mccarthy, Li
    Mcnally, Elizabeth M.
    Meigs, James B.
    Mersha, Tesfaye B.
    NATURE MEDICINE, 2024, 30 (02) : 480 - 487
  • [23] Polygenic Scores to Assess Atherosclerotic Cardiovascular Disease Risk Clinical Perspectives and Basic Implications
    Aragam, Krishna G.
    Natarajan, Pradeep
    CIRCULATION RESEARCH, 2020, 126 (09) : 1159 - 1177
  • [24] Polygenic risk scores for dyslipidemia and atherosclerotic cardiovascular disease: Progress toward clinical implementation
    Levin, Michael G.
    Rader, Daniel J.
    BEST PRACTICE & RESEARCH CLINICAL ENDOCRINOLOGY & METABOLISM, 2023, 37 (03)
  • [25] Cost-Effectiveness of Polygenic Risk Scores to Guide Statin Therapy for Cardiovascular Disease Prevention
    Kiflen, Michel
    Le, Ann
    Mao, Shihong
    Lali, Ricky
    Narula, Sukrit
    Xie, Feng
    Pare, Guillaume
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2022, 15 (05): : 386 - 395
  • [26] Clinical use of polygenic risk scores for detection of peripheral artery disease and cardiovascular events
    Omiye, Jesutofunmi A.
    Ghanzouri, Ilies
    Lopez, Ivan
    Wang, Fudi
    Cabot, John
    Amal, Saeed
    Ye, Jianqin
    Lopez, Nicolas Gabriel
    Adebayo-Tijani, Faatihat
    Ross, Elsie Gyang
    PLOS ONE, 2024, 19 (05):
  • [27] Lipidomic risk scores are independent of polygenic risk scores and can predict incidence of diabetes and cardiovascular disease in a large population cohort
    Lauber, Chris
    Gerl, Mathias J.
    Klose, Christian
    Ottosson, Filip
    Melander, Olle
    Simons, Kai
    PLOS BIOLOGY, 2022, 20 (03)
  • [28] Combining European and US risk prediction models with polygenic risk scores to refine cardiovascular prevention: the CoLaus|PsyCoLaus Study
    de La Harpe, Roxane
    Thorball, Christian W.
    Redin, Claire
    Fournier, Stephane
    Mueller, Olivier
    Strambo, Davide
    Michel, Patrik
    Vollenweider, Peter
    Marques-Vidal, Pedro
    Fellay, Jacques
    Vaucher, Julien
    EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2023, 30 (07) : 561 - 571
  • [29] Evaluating a polygenic hazard score to predict risk of developing metastatic or fatal prostate cancer in the multi-ancestry Million Veteran Program cohort.
    Pagadala, Meghana
    Lynch, Julie Ann
    Karunamuni, Roshan
    Alba, Patrick
    Lee, Kyung Min
    Agiri, Fatai
    Anglin-Foote, Tori
    Carter, Hannah
    Gaziano, J. Michael
    Jasuja, Guneet Kaur
    Deka, Rishi
    Rose, Brent S.
    Panizzon, Matthew
    Hauger, Richard
    Seibert, Tyler
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (06)
  • [30] Validation of a multi-ancestry polygenic risk score and age-specific risks of prostate cancer: A meta-analysis within diverse populations
    Chen, Fei
    Darst, Burcu F.
    Madduri, Ravi K.
    Rodriguez, Alex A.
    Sheng, Xin
    Rentsch, Christopher T.
    Andrews, Caroline
    Tang, Wei
    Kibel, Adam S.
    Plym, Anna
    Cho, Kelly
    Jalloh, Mohamed
    Gueye, Serigne Magueye
    Niang, Lamine
    Ogunbiyi, Olufemi J.
    Popoola, Olufemi
    Adebiyi, Akindele O.
    Aisuodionoe-Shadrach, Oseremen, I
    Ajibola, Hafees O.
    Jamda, Mustapha A.
    Oluwole, Olabode P.
    Nwegbu, Maxwell
    Adusei, Ben
    Mante, Sunny
    Darkwa-Abrahams, Afua
    Mensah, James E.
    Adjei, Andrew Anthony
    Diop, Halimatou
    Lachance, Joseph
    Rebbeck, Timothy R.
    Ambs, Stefan
    Gaziano, J. Michael
    Justice, Amy C.
    Conti, David, V
    Haiman, Christopher A.
    ELIFE, 2022, 11