Precision Medicine in Cardiovascular Disease Prevention: Clinical Validation of Multi-Ancestry Polygenic Risk Scores in a US Cohort

被引:0
|
作者
Ponikowska, Malgorzata [1 ,2 ]
Di Domenico, Paolo [1 ]
Bolli, Alessandro [1 ]
Busby, George Bartholomew [1 ]
Perez, Emma [1 ,3 ]
Botta, Giordano [1 ]
机构
[1] Allelica Inc, San Francisco, CA 94105 USA
[2] Med Univ Gdansk, Fac Med, Dept Biol & Med Genet, PL-80210 Gdansk, Poland
[3] Brigham & Womens Hosp, Boston, MA 02115 USA
关键词
polygenic risk score; ancestry-specific polygenic risk score; coronary artery disease; coronary artery disease polygenic risk score; PRS; CAD; CAD PRS; precision cardiovascular care; GENETIC RISK; ASSOCIATION; VARIANTS; POLYMORPHISMS; CHOLESTEROL; GUIDELINES; STATINS; COMMON; ALPHA;
D O I
10.3390/nu17050926
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Background: Polygenic risk score (PRS) quantifies the cumulative effects of common genetic variants across the genome, including both coding and non-coding regions, to predict the risk of developing common diseases. In cardiovascular medicine, PRS enhances risk stratification beyond traditional clinical risk factors, offering a precision medicine approach to coronary artery disease (CAD) prevention. This study evaluates the predictive performance of a multi-ancestry PRS framework for cardiovascular risk assessment using the All of Us (AoU) short-read whole-genome sequencing dataset comprising over 225,000 participants. Methods: We developed PRSs for lipid traits (LDL-C, HDL-C, triglycerides) and cardiometabolic conditions (type 2 diabetes, hypertension, atrial fibrillation) and constructed two metaPRSs: one integrating lipid and cardiometabolic PRSs (risk factor metaPRS) and another incorporating CAD PRSs in addition to these risk factors (risk factor + CAD metaPRS). Predictive performance was evaluated separately for each trait-specific PRS and for both metaPRSs to assess their effectiveness in CAD risk prediction across diverse ancestries. Model predictive performance, including calibration, was assessed separately for each ancestry group, ensuring that all metrics were ancestry-specific and that PRSs remain generalizable across diverse populations Results: PRSs for lipids and cardiometabolic conditions demonstrated strong predictive performance across ancestries. The risk factors metaPRS predicted CAD risk across multiple ancestries. The addition of a CAD-specific PRS to the risk factors metaPRS improved predictive performance, highlighting a genetic component in CAD etiopathology that is not fully captured by traditional risk factors, whether clinically measured or genetically inferred. Model calibration and validation across ancestries confirmed the broad applicability of PRS-based approaches in multi-ethnic populations. Conclusion: PRS-based risk stratification provides a reliable, ancestry-inclusive framework for personalized cardiovascular disease prevention, enabling better targeted interventions such as pharmacological therapy and lifestyle modifications. By incorporating genetic information from both coding and non-coding regions, PRSs refine risk prediction across diverse populations, advancing the integration of genomics into precision medicine for common diseases
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Multi-ancestry polygenic risk scores for venous thromboembolism
    Jee, Yon Ho
    Thibord, Florian
    Dominguez, Alicia
    Sept, Corriene
    Boulier, Kristin
    Venkateswaran, Vidhya
    Ding, Yi
    Cherlin, Tess
    Verma, Shefali Setia
    Lo Faro, Valeria
    Bartz, Traci M.
    Boland, Anne
    Brody, Jennifer A.
    Deleuze, Jean-Francois
    Emmerich, Joseph
    Germain, Marine
    Johnson, Andrew D.
    Kooperberg, Charles
    Morange, Pierre-Emmanuel
    Pankratz, Nathan
    Psaty, Bruce M.
    Reiner, Alexander P.
    Smadja, David M.
    Sitlani, Colleen M.
    Suchon, Pierre
    Tang, Weihong
    Tregouet, David-Alexandre
    Zollner, Sebastian
    Pasaniuc, Bogdan
    Damrauer, Scott M.
    Sanna, Serena
    Snieder, Harold
    Kabrhel, Christopher
    Smith, Nicholas L.
    Kraft, Peter
    HUMAN MOLECULAR GENETICS, 2024,
  • [2] RISK ASSESMENT WITH POLYGENIC RISK SCORES IN MULTI-ANCESTRY SAMPLES
    Aliev, F.
    Salvatore, J.
    Su, J.
    Kuo, S.
    Barr, P.
    Agrawal, A.
    Johnson, E.
    Dick, D.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2019, 43 : 50A - 50A
  • [3] Benchmarking multi-ancestry prostate cancer polygenic risk scores in a real-world cohort
    Shah, Yajas
    Kulm, Scott
    Nauseef, Jones T.
    Chen, Zhengming
    Elemento, Olivier
    Kensler, Kevin H.
    Sharaf, Ravi N.
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (04)
  • [4] Single- versus Multi-Ancestry Polygenic Risk Scores for CKD in Black Americans
    Jones, Alana C.
    Patki, Amit
    Srinivasasainagendra, Vinodh
    Tiwari, Hemant K.
    Armstrong, Nicole D.
    Chaudhary, Ninad S.
    Limdi, Nita A.
    Hidalgo, Bertha A.
    Davis, Brittney
    Cimino, James J.
    Khan, Atlas
    Kiryluk, Krzysztof
    Lange, Leslie A.
    Lange, Ethan M.
    Arnett, Donna K.
    Young, Bessie A.
    Diamantidis, Clarissa J.
    Franceschini, Nora
    Wassertheil-Smoller, Sylvia
    Rich, Stephen S.
    Rotter, Jerome I.
    Mychaleckyj, Josyf C.
    Kramer, Holly J.
    Chen, Yii-Der I.
    Psaty, Bruce M.
    Brody, Jennifer A.
    de Boer, Ian H.
    Bansal, Nisha
    Bis, Joshua C.
    Irvin, Marguerite R.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (11): : 1558 - 1569
  • [5] Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments
    George B. Busby
    Scott Kulm
    Alessandro Bolli
    Jen Kintzle
    Paolo Di Domenico
    Giordano Bottà
    Nature Communications, 14
  • [6] Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments
    Busby, George B.
    Kulm, Scott
    Bolli, Alessandro
    Kintzle, Jen
    Domenico, Paolo Di
    Botta, Giordano
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [7] A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease
    Patel, Aniruddh P.
    Wang, Minxian
    Ruan, Yunfeng
    Koyama, Satoshi
    Clarke, Shoa L.
    Yang, Xiong
    Tcheandjieu, Catherine
    Agrawal, Saaket
    Fahed, Akl C.
    Ellinor, Patrick T.
    Tsao, Philip
    Sun, Yan, V
    Cho, Kelly
    Wilson, Peter W. F. L.
    Assimes, Themistocles L.
    van Heel, David A.
    Butterworth, Adam S.
    Aragam, Krishna G.
    Natarajan, Pradeep
    Khera, Amit V.
    NATURE MEDICINE, 2023, 29 (07) : 1793 - +
  • [8] A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease
    Aniruddh P. Patel
    Minxian Wang
    Yunfeng Ruan
    Satoshi Koyama
    Shoa L. Clarke
    Xiong Yang
    Catherine Tcheandjieu
    Saaket Agrawal
    Akl C. Fahed
    Patrick T. Ellinor
    Philip S. Tsao
    Yan V. Sun
    Kelly Cho
    Peter W. F. Wilson
    Themistocles L. Assimes
    David A. van Heel
    Adam S. Butterworth
    Krishna G. Aragam
    Pradeep Natarajan
    Amit V. Khera
    Nature Medicine, 2023, 29 (7) : 1793 - 1803
  • [9] Progress in cardiovascular prevention: from risk charts to polygenic scores and precision prevention
    Boccanelli, Alessandro
    Giampaoli, Simona
    Botta, Giordano
    Vanuzzo, Diego
    GIORNALE ITALIANO DI CARDIOLOGIA, 2021, 22 (08) : 599 - 605
  • [10] Polygenic risk scores for cardiometabolic traits demonstrate importance of ancestry for predictive precision medicine
    Kember, Rachel L.
    Verma, Shefali S.
    Verma, Anurag
    Xiao, Brenda
    Lucas, Anastasia
    Kripke, Colleen M.
    Judy, Renae
    Chen, Jinbo
    Damrauer, Scott M.
    Rader, Daniel J.
    Ritchie, Marylyn D.
    BIOCOMPUTING 2024, PSB 2024, 2024, : 611 - 626