Analog filters based on the Mittag-Leffler functions

被引:0
|
作者
Allagui, Anis [1 ,2 ]
Elwakil, Ahmed S. [3 ,4 ,5 ]
Nako, Julia [6 ]
Psychalinos, Costas [6 ]
机构
[1] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, POB 27272, Sharjah, U Arab Emirates
[2] Univ Sharjah, Dept Elect & Comp Engn, Miami, FL 33174 USA
[3] Univ Sharjah, Dept Elect Engn, POB 27272, Sharjah, U Arab Emirates
[4] Univ Calgary, Dept Elect & Software Engn, Calgary, AB, Canada
[5] Nile Univ, Nanoelect Integrated Syst Ctr NISC, Giza, Egypt
[6] Univ Patras, Dept Phys, Elect Lab, GR-26504 Patras, Greece
关键词
Analog signal processing; Mittag-Leffler function; Fractional-order filters; Dirac delta function; Field programmable analog array; PRACTICAL REALIZATION; BUTTERWORTH FILTER;
D O I
10.1016/j.sigpro.2025.109953
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose and study anew class of filters (named hereinafter the Mittag-Leffler filters) based on the MittagLeffler function E alpha,beta(z) in its single-parameter or double-parameter forms by transposing its argument to the frequency-domain; i.e. z = -s = -jco. A unique feature of these filters is that their impulse response is a Gaussian-like (delta-like) deformed and delayed impulse function for which we derive exact expressions using the H-Fox function. We also study the frequency response of this class of filters and obtain lower-order, realizable integer-order approximations of its transfer functions. A second-order curve-fitting approximation is then used to perform experimental results using a Field Programmable Analog Array platform to verify the theory.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Laplace transform and the Mittag-Leffler function
    Teodoro, G. Sales
    de Oliveira, E. Capelas
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (04) : 595 - 604
  • [42] On the numerical computation of the Mittag-Leffler function
    Valerio, Duarte
    Machado, Jose Tenreiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (10) : 3419 - 3424
  • [43] Exponential asymptotics of the Mittag-Leffler function
    Wong, R
    Zhao, YQ
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (03) : 355 - 385
  • [44] On Meromorphic Functions Defined by a New Operator Containing the Mittag-Leffler Function
    Elhaddad, Suhila
    Darus, Maslina
    SYMMETRY-BASEL, 2019, 11 (02):
  • [45] A FURTHER EXTENSION OF MITTAG-LEFFLER FUNCTION
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1377 - 1395
  • [46] A monotonicity property of the Mittag-Leffler function
    Alzer, Horst
    Kwong, Man Kam
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 181 - 187
  • [47] A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION
    Arshad, Muhammad
    Choi, Junesang
    Mubeen, Shahid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 549 - 560
  • [48] Certain inequalities of meromorphic univalent functions associated with the Mittag-Leffler function
    Aouf, Mohamed K.
    Mostafa, Adela O.
    JOURNAL OF APPLIED ANALYSIS, 2019, 25 (02) : 173 - 178
  • [49] Properties of the Mittag-Leffler relaxation function
    Berberan-Santos, MN
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) : 629 - 635
  • [50] Integral Representation of the Mittag-Leffler Function
    V. V. Saenko
    Russian Mathematics, 2022, 66 : 43 - 58