Analog filters based on the Mittag-Leffler functions

被引:1
作者
Allagui, Anis [1 ,2 ]
Elwakil, Ahmed S. [3 ,4 ,5 ]
Nako, Julia [6 ]
Psychalinos, Costas [6 ]
机构
[1] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, POB 27272, Sharjah, U Arab Emirates
[2] Univ Sharjah, Dept Elect & Comp Engn, Miami, FL 33174 USA
[3] Univ Sharjah, Dept Elect Engn, POB 27272, Sharjah, U Arab Emirates
[4] Univ Calgary, Dept Elect & Software Engn, Calgary, AB, Canada
[5] Nile Univ, Nanoelect Integrated Syst Ctr NISC, Giza, Egypt
[6] Univ Patras, Dept Phys, Elect Lab, GR-26504 Patras, Greece
关键词
Analog signal processing; Mittag-Leffler function; Fractional-order filters; Dirac delta function; Field programmable analog array; PRACTICAL REALIZATION; BUTTERWORTH FILTER;
D O I
10.1016/j.sigpro.2025.109953
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose and study anew class of filters (named hereinafter the Mittag-Leffler filters) based on the MittagLeffler function E alpha,beta(z) in its single-parameter or double-parameter forms by transposing its argument to the frequency-domain; i.e. z = -s = -jco. A unique feature of these filters is that their impulse response is a Gaussian-like (delta-like) deformed and delayed impulse function for which we derive exact expressions using the H-Fox function. We also study the frequency response of this class of filters and obtain lower-order, realizable integer-order approximations of its transfer functions. A second-order curve-fitting approximation is then used to perform experimental results using a Field Programmable Analog Array platform to verify the theory.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Approximation of the Fractional-Order Laplacian sα As a Weighted Sum of First-Order High-Pass Filters [J].
AbdelAty, A. M. ;
Elwakil, A. S. ;
Radwan, A. G. ;
Psychalinos, C. ;
Maundy, B. J. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (08) :1114-1118
[2]   Extending the concept of analog Butterworth filter for fractional order systems [J].
Acharya, Anish ;
Das, Saptarshi ;
Pan, Indranil ;
Das, Shantanu .
SIGNAL PROCESSING, 2014, 94 :409-420
[3]   Practical Realization of Tunable Fractional Order Parallel Resonator and Fractional Order Filters [J].
Adhikary, Avishek ;
Sen, Siddhartha ;
Biswas, Karabi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2016, 63 (08) :1142-1151
[4]   On the Theory and Application of the Fractional-Order Dirac-Delta Function [J].
Allagui, Anis ;
Elwakil, Ahmed S. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (03) :1461-1465
[5]  
Anadigm, AN231E04 dpASP: The AN231E04 dpASP dynamically reconfigurable analog signal processor
[6]   Basis Functions for a Transient Analysis of Linear Commensurate Fractional-Order Systems [J].
Biolek, Dalibor ;
Biolkova, Viera ;
Kolka, Zdenek ;
Biolek, Zdenek .
ALGORITHMS, 2023, 16 (07)
[7]   A Reconfigurable-Band Analog Filter Standard-Cell Based on Differential/Single Input Signaling [J].
Diaz-Sanchez, Alejandro ;
Zamora-Mejia, Gregorio ;
Rocha-Perez, Jose M. ;
Vazquez-Gonzalez, Jose L. ;
Zapata-Rodriguez, Uriel G. .
IEEE ACCESS, 2024, 12 :13586-13600
[8]   On the Fractional Derivative of Dirac Delta Function and Its Application [J].
Feng, Zaiyong ;
Ye, Linghua ;
Zhang, Yi .
ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
[9]   Ladder-Type Gm - C Filters With Improved Linearity [J].
Ghasemi, Abdol Rasool ;
Aminzadeh, Hamed ;
Ballo, Andrea .
IEEE ACCESS, 2023, 11 :41503-41513
[10]  
Gorenflo R., 2014, Mittag-Leffler Functions, Related Topics and Applications: Theory and Applications, P7