Anisotropic diffusion of high-energy cosmic rays in magnetohydrodynamic turbulence

被引:1
作者
Gao, Na-Na [1 ]
Zhang, Jian-Fu [1 ,2 ,3 ]
机构
[1] Xiangtan Univ, Dept Phys, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Key Lab Stars & Interstellar Medium, Xiangtan 411105, Peoples R China
[3] Chungnam Natl Univ, Dept Astron & Space Sci, Daejeon, South Korea
基金
中国国家自然科学基金; 湖南省自然科学基金;
关键词
magnetic fields; magnetohydrodynamics (MHD); turbulence; cosmic rays; ISM: general; MIRROR DIFFUSION; MAGNETOTHERMAL INSTABILITY; INTERSTELLAR TURBULENCE; POSITRON FLUX; PROPAGATION; TRANSPORT; PULSAR; ORIGIN; ACCELERATION; PARTICLES;
D O I
10.1051/0004-6361/202452541
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The origin of cosmic rays (CRs) and how they propagate remain unclear. Studying the propagation of CRs in magnetohydrodynamic (MHD) turbulence can help to comprehend many open issues related to CR origin and the role of turbulent magnetic fields. Aims. To comprehend the phenomenon of slow diffusion in the near-source region, we study the interactions of CRs with the ambient turbulent magnetic field to reveal their universal laws. Methods. We numerically study the interactions of CRs with the ambient turbulent magnetic field, considering pulsar wind nebula as a general research case. Taking the magnetization parameter and turbulence spectral index as free parameters, together with radiative losses, we perform three group simulations to analyze the CR spectral, spatial distributions, and possible CR diffusion types. Results. Our studies demonstrate that (1) CR energy density decays with both its effective radius and kinetic energy in the form of power-law distributions; (2) the morphology of the CR spatial distribution strongly depends on the properties of magnetic turbulence and the viewing angle; (3) CRs suffer a slow diffusion near the source and a fast or normal diffusion away from the source; (4) the existence of a power-law relationship between the averaged CR energy density and the magnetization parameter is independent of both CR energy and radiative losses; and (5) radiative losses can suppress CR anisotropic diffusion and soften the power-law distribution of CR energy density. Conclusions. The distribution law established between turbulent magnetic fields and CRs presents an intrinsic property, providing a convenient way to understand complex astrophysical processes related to turbulence cascades.
引用
收藏
页数:12
相关论文
共 89 条
[1]   Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth [J].
Abeysekara, A. U. ;
Albert, A. ;
Alfaro, R. ;
Alvarez, C. ;
Alvarez, J. D. ;
Arceo, R. ;
Arteaga-Velazquez, J. C. ;
Rojas, D. Avila ;
Solares, H. A. Ayala ;
Barber, A. S. ;
Bautista-Elivar, N. ;
Becerril, A. ;
Belmont-Moreno, E. ;
BenZvi, S. Y. ;
Berley, D. ;
Bernal, A. ;
Braun, J. ;
Brisbois, C. ;
Caballero-Mora, K. S. ;
Capistran, T. ;
Carraminana, A. ;
Casanova, S. ;
Castillo, M. ;
Cotti, U. ;
Cotzomi, J. ;
de Leon, S. Coutino ;
De Leon, C. ;
De la Fuente, E. ;
Dingus, B. L. ;
DuVernois, M. A. ;
Diaz-Velez, J. C. ;
Ellsworth, R. W. ;
Engel, K. ;
Enriquez-Rivera, O. ;
Fiorino, D. W. ;
Fraija, N. ;
Garcia-Gonzalez, J. A. ;
Garfias, F. ;
Gerhardt, M. ;
Munoz, A. Gonzalez ;
Gonzalez, M. M. ;
Goodman, J. A. ;
Hampel-Arias, Z. ;
Harding, J. P. ;
Hernandez, S. ;
Hernandez-Almada, A. ;
Hinton, J. ;
Hona, B. ;
Hui, C. M. ;
Huntemeyer, P. .
SCIENCE, 2017, 358 (6365) :911-914
[2]   Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station [J].
Aguilar, M. ;
Cavasonza, L. Ali ;
Ambrosi, G. ;
Arruda, L. ;
Attig, N. ;
Aupetit, S. ;
Azzarello, P. ;
Bachlechner, A. ;
Barao, F. ;
Barrau, A. ;
Barrin, L. ;
Bartoloni, A. ;
Basara, L. ;
Pree, S. Basegmez-du ;
Battarbee, M. ;
Battiston, R. ;
Becker, U. ;
Behlmann, M. ;
Beischer, B. ;
Berdugo, J. ;
Bertucci, B. ;
Bindel, K. F. ;
Bindi, V. ;
Boella, G. ;
de Boer, W. ;
Bollweg, K. ;
Bonnivard, V. ;
Borgia, B. ;
Boschini, M. J. ;
Bourquin, M. ;
Bueno, E. F. ;
Burger, J. ;
Cadoux, F. ;
Cai, X. D. ;
Capell, M. ;
Caroff, S. ;
Casaus, J. ;
Castellini, G. ;
Cervelli, F. ;
Chae, M. J. ;
Chang, Y. H. ;
Chen, A. I. ;
Chen, G. M. ;
Chen, H. S. ;
Cheng, L. ;
Chou, H. Y. ;
Choumilov, E. ;
Choutko, V. ;
Chung, C. H. ;
Clark, C. .
PHYSICAL REVIEW LETTERS, 2016, 117 (23)
[3]   Cosmic-Ray Transport in Varying Galactic Environments [J].
Armillotta, Lucia ;
Ostriker, Eve C. ;
Jiang, Yan-Fei .
ASTROPHYSICAL JOURNAL, 2022, 929 (02)
[4]  
Barreto-Mota L, 2024, Arxiv, DOI arXiv:2405.12146
[5]   MHD turbulence [J].
Andrey Beresnyak .
Living Reviews in Computational Astrophysics, 2019, 5 (1)
[6]   NUMERICAL STUDY OF COSMIC RAY DIFFUSION IN MAGNETOHYDRODYNAMIC TURBULENCE [J].
Beresnyak, A. ;
Yan, H. ;
Lazarian, A. .
ASTROPHYSICAL JOURNAL, 2011, 728 (01)
[7]  
Berezinskii V.S., 1990, ASTROPHYSICS COSMIC
[8]   The origin of galactic cosmic rays [J].
Blasi, Pasquale .
ASTRONOMY AND ASTROPHYSICS REVIEW, 2013, 21
[9]   The heliospheric magnetic field from 850 to 2000 AD inferred from 10Be records -: art. no. A12102 [J].
Caballero-Lopez, RA ;
Moraal, H ;
McCracken, KG ;
McDonald, FB .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A12)
[10]   The First LHAASO Catalog of Gamma-Ray Sources [J].
Cao, Zhen ;
Aharonian, F. ;
An, Q. ;
Axikegu ;
Bai, Y. X. ;
Bao, Y. W. ;
Bastieri, D. ;
Bi, X. J. ;
Bi, Y. J. ;
Cai, J. T. ;
Cao, Q. ;
Cao, W. Y. ;
Cao, Zhe ;
Chang, J. ;
Chang, J. F. ;
Chen, A. M. ;
Chen, E. S. ;
Chen, Liang ;
Chen, Lin ;
Chen, Long ;
Chen, M. J. ;
Chen, M. L. ;
Chen, Q. H. ;
Chen, S. H. ;
Chen, S. Z. ;
Chen, T. L. ;
Chen, Y. ;
Cheng, N. ;
Cheng, Y. D. ;
Cui, M. Y. ;
Cui, S. W. ;
Cui, X. H. ;
Cui, Y. D. ;
Dai, B. Z. ;
Dai, H. L. ;
Dai, Z. G. ;
Danzengluobu ;
della Volpe, D. ;
Dong, X. Q. ;
Duan, K. K. ;
Fan, J. H. ;
Fan, Y. Z. ;
Fang, J. ;
Fang, K. ;
Feng, C. F. ;
Feng, L. ;
Feng, S. H. ;
Feng, X. T. ;
Feng, Y. L. ;
Gabici, S. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2024, 271 (01)