Machine learning and statistical models to predict all-cause mortality in type 2 diabetes: Results from the UK Biobank study

被引:0
作者
Zhang, Tingjing [1 ,2 ]
Huang, Mingyu [3 ,4 ]
Chen, Liangkai [5 ]
Xia, Yang [1 ,6 ]
Min, Weiqing [3 ,4 ]
Jiang, Shuqiang [3 ,4 ]
机构
[1] Sch Publ Hlth, Wannan Med Coll, Wuhu, Peoples R China
[2] Wannan Med Coll, Inst Brain Sci, Wuhu, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Huazhong Univ Sci & Technol, Tongji Med Coll, Dept Nutr & Food Hyg, Hubei Key Lab Food Nutr & Safety,Sch Publ Hlth, Wuhan, Peoples R China
[6] China Med Univ, Shengjing Hosp, Dept Clin Epidemiol, Shenyang, Peoples R China
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Machine learning; All-cause mortality; Diabetes; IN-HOSPITAL MORTALITY; VALIDATION; RISK; COMPLICATIONS; MELLITUS;
D O I
10.1016/j.dsx.2024.103135
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims: This study aims to compare the performance of contemporary machine learning models with statistical models in predicting all-cause mortality in patients with type 2 diabetes mellitus and to develop a user-friendly mortality risk prediction tool. Methods: A prospective cohort study was conducted including 22,579 people with diabetes from the UK Biobank. Models evaluated include Cox proportional hazards, random survival forests (RSF), gradient boosting (GB) survival, DeepSurv, and DeepHit. Results: Over a median follow-up period of 9 years, 2,665 patients died. Machine learning models outperformed the Cox model in the validation dataset, with C-index values of 0.72-0.73 vs. 0.71 for Cox (p < 0.01). Deep learning models, particularly DeepHit, demonstrated superior calibration and achieved lower Brier scores (0.09 vs. 0.10 for Cox, p < 0.05). An online prediction tool based on the DeepHit was developed for patient care: http://123.57.42.89:6006/. Conclusions: Machine learning models performed better than statistical models, highlighting the potential of machine learning techniques for predicting all-cause mortality risk and facilitating personalized healthcare management for individuals with diabetes.
引用
收藏
页数:7
相关论文
共 32 条
  • [1] Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging
    Al'Aref, Subhi J.
    Anchouche, Khalil
    Singh, Gurpreet
    Slomka, Piotr J.
    Kolli, Kranthi K.
    Kumar, Amit
    Pandey, Mohit
    Maliakal, Gabriel
    van Rosendael, Alexander R.
    Beecy, Ashley N.
    Berman, Daniel S.
    Leipsic, Jonathan
    Nieman, Koen
    Andreini, Daniele
    Pontone, Gianluca
    Schoepf, U. Joseph
    Shaw, Leslee J.
    Chang, Hyuk-Jae
    Narula, Jagat
    Bax, Jeroen J.
    Guan, Yuanfang
    Min, James K.
    [J]. EUROPEAN HEART JOURNAL, 2019, 40 (24) : 1975 - +
  • [2] Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants
    Alaa, Ahmed M.
    Bolton, Thomas
    Di Angelantonio, Emanuele
    Rudd, James H. F.
    van der Schaar, Mihaela
    [J]. PLOS ONE, 2019, 14 (05):
  • [3] Developing a Prediction Model for 7-Year and 10-Year All-Cause Mortality Risk in Type 2 Diabetes Using a Hospital-Based Prospective Cohort Study
    Chiu, Sherry Yueh-Hsia
    Chen, Ying Isabel
    Lu, Juifen Rachel
    Ng, Soh-Ching
    Chen, Chih-Hung
    [J]. JOURNAL OF CLINICAL MEDICINE, 2021, 10 (20)
  • [4] Development and Validation of a Predicting Model of All-Cause Mortality in Patients With Type 2 Diabetes
    De Cosmo, Salvatore
    Copetti, Massimiliano
    Lamacchia, Olga
    Fontana, Andrea
    Massa, Michela
    Morini, Eleonora
    Pacilli, Antonio
    Fariello, Stefania
    Palena, Antonio
    Rauseo, Anna
    Viti, Rafaella
    Di Paola, Rosa
    Menzaghi, Claudia
    Cignarelli, Mauro
    Pellegrini, Fabio
    Trischitta, Vincenzo
    [J]. DIABETES CARE, 2013, 36 (09) : 2830 - 2835
  • [5] GORDON L, 1985, CANCER TREAT REP, V69, P1065
  • [6] Graf E, 1999, STAT MED, V18, P2529
  • [7] Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
  • [8] 2-4
  • [9] Machine Learning Prediction Models for In-Hospital Mortality After Transcatheter Aortic Valve Replacement
    Hernandez-Suarez, Dagmar F.
    Kim, Yeunjung
    Villablanca, Pedro
    Gupta, Tanush
    Wiley, Jose
    Nieves-Rodriguez, Brenda G.
    Rodriguez-Maldonado, Jovaniel
    Maldonado, Roberto Feliu
    Sant'Ana, Istoni da Luz
    Sanina, Cristina
    Cox-Alomar, Pedro
    Ramakrishna, Harish
    Lopez-Candales, Angel
    O'Neill, William W.
    Pinto, Duane S.
    Latib, Azeem
    Roche-Lima, Abiel
    [J]. JACC-CARDIOVASCULAR INTERVENTIONS, 2019, 12 (14) : 1328 - 1338
  • [10] Dynamic-DeepHit: A Deep Learning Approach for Dynamic Survival Analysis With Competing Risks Based on Longitudinal Data
    Lee, Changhee
    Yoon, Jinsung
    van der Schaar, Mihaela
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (01) : 122 - 133